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1. INTRODUCTION 

 

The static spherically symmetric solution of the Einstein field equations found by 
Schwarzschild is written usually in the form given by Hilbert. Nowadays it is called the 
standard form of the Schwarzschild metric. This metric has a singularity at r 2M . To date 

it has been discussed whether this locus is a physical singularity or a mere co-ordinate 
singularity. The inner region 0 r 2M   of the metric is quoted mostly for the description of 

black holes. Possibilities had been considered if and how particles can intrude into the 
inner region. Concerning the discussion on that topic we refer to the papers of Gautreau 
[1,2,3] and Gautreau and Hoffmann [4], de Sabbata, Pavšič and Recami [5], Janis [6], 
Cavalleri and Spinelli [7,8], Janis [9], Jaffe and Shapiro [10-13], McGruder III [14], Baierlein 
[15], Tereno [16], Mitra [17,18], Tereno [19], Mitra [20,21], Shapiro-Teukolsky [22], 
Crawford and Tereno [23], Krori and Paul [24], Lynden-Bell und Katz [25], Salzmann and 
Salzmann [26], Logunov, Mestverishvili and Kiselev [27], Loinger [28], and de Sabbata and 
Shah [29]. A detailed criticism of all attempts to travel beneath the event horizon was given 
by Mitra [30]. Recently Popławski [31] has published a paper on the Einstein-Rosen bridge 
by the use of isotropic co-ordinates. Although he concedes that the velocity of infalling 
particles would be the velocity of light at the event horizon he notes that particles continue 
moving after reaching the event horizon and that they could pass the bridge. In Sec. 2 we 
treat the question of traversability of the Einstein-Rosen bridge. In Sec. 3 we present more 
on isotropic co-ordinates and the Einstein-Rosen bridge. 

 

 

2. EINSTEIN-ROSEN BRIDGE 

 

 

Weyl [32] was the first to consider both roots of the Schwarzschild parabola. He 
noted that the Schwarzschild space is covered twice by the co-ordinate system. He 
interpreted the first sheet as responsible for the exterior, the second for the interior field. 
He discovered the isotropic co-ordinates and made the just-mentioned identification once 
more in isotropic co-ordinates. 

Einstein and Rosen [33] introduced the term bridge for the sphere connecting the 
two sheets at r = 2M. They ascribed the mass to this sphere. Thus, they claimed to have 
obtained a solution with mass without introducing a stress-energy tensor. They identified 
the sphere with a neutral particle. 

Einstein and Rosen also considered a charged metric with zero mass parameter M. 
Actually this metric is the Reissner-Nordström metric [34,35]. Thus, the geometry is made 
up by the charge. In order to obtain a reasonable theory they had to reverse the sign of the 
electric stress-energy tensor. Later on Som, Santos, and Teixeira [36] showed that M = 0 
contradicted the expression for the effective mass for a charged particle. 

In a footnote Einstein and Rosen considered to change the sign of the charge term 
in the metric in order to correct the sign of the stress-energy tensor. Nowadays such a 
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parameter is called l, the NUT parameter and stands for a gravimagnetic monopole. If 
Einstein and Rosen had worked out this ansatz they would have found the seed metric for 
the NUT model. 

Later on, the two sheets have been interpreted as two remote regions of the 
universe or as parallel universes connected by the bridge. The latter was called wormhole. 
In this case the geometry is massless and M is the form parameter of Flamm’s paraboloid. 
No one would claim that anybody could travel through a massive bridge. For M = 0 the 
Schwarzschild parabola flattens out. The wormhole is closed and the two sheets coincide. 

In the literature one finds different views on the curvature of space-time. (i) the term 
curvature is used for any space with non-Euclidean geometry. A higher dimensional space 
as embedding space for our 4-dimensional world is not assumed to exist. It is not the 
space that is curved, but the geometry of the space. This concept of curvature has been 
impressively formulated by Whittaker [37]. (ii) the curvature is explained by embeddings of 
surfaces into a higher dimensional flat space. The advantage of this methodology is that all 
tools of the differential geometry –  e. g. the theorems of Gauss and Codazzi – can be 
used. Evidently, bridges and wormholes are geometrical objects and should be treated 
with respect to the view (ii) of curvature. 

Firstly, we have to note that in discussing bridges and wormholes the ‘inner region’  
0 r 2M   of the Schwarzschild metric is definitely excluded. In addition, all values of the 

curvature quantities in that region are excluded as well. 

Many authors use the Kretschmann scalar to judge the geometrical validity for a 
range of variables. Since we finally have to discuss a bridge we have to take literally all 
terms related to the curvatures of the space. One has to take notice that the Riemann 
which should describe the surface seemingly has reasonable values in regions where the 
surface does not exist if one chooses ‘suitable’ variables. An arbitrary nonvanishing 
component of the Riemann tensor, e. g. 

 12

12 3

M
R

r
  (2.1) 

seems to be valid for all 0 r   . Inserting the curvature radius of the Schwarzschild 

parabola 32r M   into (2.1) one obtains 
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Since   has its smallest value at the vertex of the parabola, namely 4M  , 12

12R  does 

not exist for r 2M . The same is valid for all other components of the Riemann and thus 

for the Kretschmann scalar 
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
 , (2.3) 

having a finite value and its highest value at the event horizon as well. 

We add some remarks on the Einstein-Rosen paper. We do this only in short, 
without treating in detail the geometrical properties. One of the aims of Einstein and 
Rosen has been to remove the singularity at r = 2M from the metric. With a new variable 
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 2u r 2M   (2.4) 

the Schwarzschild metric is free from singularities. It should not be overlooked that u = 0 is 
equivalent to r = 2M, the definition of the Schwarzschild radius. With the choice of the new 
co-ordinate system the range of r is limited to 2M r   . The ‘inner region’ which is 

usually quoted for the description of black holes is excluded in the framework of 

wormholes. In order to clarify the variable u, we rescale it with u R 8M . Thus, we 

obtain 

  2R 8M r 2M   , (2.5) 

the well-known formula for the Schwarzschild parabola. Rotation of the Schwarzschild 
parabola creates Flamm’s paraboloid. R and r are the Cartesian co-ordinates of the flat 
embedding space. Einstein and Rosen admit both roots of (2.5) 

  R 8M r 2M    . (2.6) 

The range of R is R  . 

The geometry is mirrored, the Einstein-Rosen bridge arises. The metric free from 
singularities reads as 

 

2
2 2 2 2 2

2 2 2 2

2 2 2

R 16M R 16M R
ds dR d dt

16M 8M R 16M

  
    

 
 . (2.7) 

R = 0 is the vertex of the parabola. At this position the radial line element of both branches 
of the parabola is dR, and the redshift factor vanishes. Outside Flamm’s paraboloid the 
geometry is not defined. From (2.7) we read the radial tangent vector 

  
2 2

1

2

R 16M 1
dx dR dR, R

16M sin


    


 (2.8) 

and we obtain the trigonometric functions 

 
2 2 2 2

4M R 4M
sin , cos , tan

RR 16M R 16M
     

 
 . (2.9) 

The value of the velocity of a freely falling observer is identified with sin . According to 

(2.9) the value of the observer’s velocity at the event horizon R 0  is the velocity of light. 

The curvature radius of the Schwarzschild parabola and the force of gravity are 

 
 

33
2 2

2 2
3

12 2 2

R 16M 16M 1 1
, E sin

16M R 16M R R

  
       

 
. (2.10) 

An inspection of these formulae shows that quantities of the bridge such as the 
velocity, the curvature radius, and the force of gravity exhibit the same properties as the 

quantities of the standard Schwarzschild system. All these properties indicate the 
hopelessness of an observer travelling through the bridge, if one requires him to 



 5 

keep the laws of the relativity theory. Furthermore, Morris and Thorne [38] showed in a 
paper on traversable and not traversable wormholes that the Einstein-Rosen model does 
not belong to the traversable ones. They analyzed the tidal forces near the bridge which 

are so strong in the environment of the bridge that they would destroy any object. 

 

 

3. ISOTROPIC CO-ORDINATES 

 

 

In order to get a deeper insight into the Einstein-Rosen bridge we investigate the 
features of the isotropic co-ordinate system and we apply them to the bridge. With the help 
of the regular nonlinear transformation 

 

2
M

r 1 r
2r

 
  
 

 , (3.1) 

wherein r is the radial Schwarzschild standard co-ordinate one obtains the line element 

  
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M
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M 2rds 1 dr r d r sin d dt
M2r

1
2r

 
  

          
   

 

 (3.2) 

in isotropic co-ordinates which is valid for all r  of 0 r   . With respect to the application 

to wormholes one has to analyze whether the isotropic representation basically differs from 
the standard representation of the Schwarzschild model. Taking a glance at the metric one 
recognizes that the redshift factor vanishes at 

 H

M
r

2
  . (3.3) 

The radial standard Schwarzschild differential and the isotropic one are related by 

 
2

2

M
dr 1 dr

4r

 
  
 

. (3.4) 

With dr dr 0  it can be shown that the function  r r  has a minimum at the event horizon. 

Within the range 
H0 r r   the variable r preserves values 2M . If r  decreases in this 

region the standard variable r increases. In particular r 0  corresponds to r . Within 

the co-ordinate range 
Hr r   both variables r and r  simultaneously increase. If the 

metric (3.2) is still another notation for the Schwarzschild metric the Schwarzschild ‘inner 
region’ 0 r 2M   is excluded by the isotropic co-ordinates from the outset. No value of r  

corresponds to a value of r beneath the event horizon. Therefore the isotropic co-ordinates 
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rule out black holes as well. Two sheets of the space corresponding to the two ranges of 
the isotropic co-ordinates 

 
H H0 r r , r r     . (3.5)  

are described by (3.2). 

The standard co-ordinate differential dr described by (3.4) is positive on the upper 
sheet. The tangent vector of the parabola is pointing outwards. In contrast, dr is negative in 

the lower sheet. The tangent vector is pointing inwards. The orientation of the tangent 
vector does not make a jump at the vertex of the parabola. Both sheets are parts of a 
wormhole (Einstein-Rosen bridge) separated by the bridge. Alternatively the two sheets 
can be identified. 

The basic quantities of the model expressed in isotropic co-ordinates are calculated 
straight forward but one has carefully to interpret the results. It is mentioned in the 
literature that the isotropic co-ordinates do not faithfully represent distances. This 
deficiency can be removed by locally gauging the rods used for measuring distances. 
Resolving (3.1) for r  one obtains the two roots 

    2 21 1
r r M r 2Mr , r r M r 2Mr

2 2
 
         (3.6) 

and the rules for gauging the rods for measurements on the sheets. Furthermore, the 
asymmetry of the upper and lower sheets that could appear plainly using ungauged 
isotropic co-ordinates is removed 1. The use of isotropic co-ordinates has the advantage 
that the Schwarzschild inner region is definitely excluded. Moreover, one does not obtain 
values for curvature quantities where these do not exist. In isotropic co-ordinates the 
Kretschmann scalar is regular for all r  and reads as 

 
2

mnsr

mnsr 126

48M 1
K R R

r M
1

2r

 
 
 

 

. (3.7) 

Correctly gauging the co-ordinate scales the Kretschmann has the same values for both 
sheets and the same values as the Kretschmann in the standard co-ordinates. Moreover, 
the Kretschmann does not show evidence of values where it does not exist. In addition, it 
has no values corresponding to the Schwarzschild inner region at the outset. 

In isotropic co-ordinates the value of the velocity of a freely falling observer is 

                                            
1
 The Schwarzschild parabola 

2
R 8M(r 2M)  is form invariant under the transformation 

 

2 2

2 2

2M 2R
M 4M, r 1 r , R

r R 16M

  



 
  

 
,  

The  R,r are the Cartesian co-ordinates of the flat embedding space. The  R, r  can be interpreted as 

rectangular co-ordinates as well if a space-dependent gauging of the rods measuring the geometrical 

quantities is admitted. The event horizon is located at 
H

r 2M . 
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  
1 2M

v r
M r

1
2r





. (3.8) 

At the event horizon the velocity grows to be  v r 1 , the velocity of light in natural units. 

This corresponds to the maximum of the value of the function  v r . The function of the 

isotropic velocity decreases after r  has run through 
Hr . 

Reading the tetrads from (3.2) and evaluating the Ricci-rotation coefficients one 
obtains the field quantities 

2 3 3 4

21 31 32 41 13 2 3 2

M
1

1 1 1 1 M2rA A , A cot , A E
r r rM M M M

1 1 1 1
2r 2r 2r 2r


      

       
          

       

 . (3.9) 

satisfying the vacuum field equations. 

The last relation shows that the force of gravity E becomes infinitely large at the 
Schwarzschild radius, as expected. The standard representation and the isotropic 
representation differ substantially. The Schwarzschild force of gravity becomes imaginary 
in the inner region, the isotropic force is real and attractive in both sheets2. 

There is more insight into the behavior of the force of gravity if we use the angle of 
ascent (r )    of the Schwarzschild parabola. Remembering the geometrical structure of 

the Schwarzschild model we write    sin r v r  . If we evaluate the curvature radius of 

the Schwarzschild parabola in isotropic co-ordinates 

 

3 3M 2r
1

2r M

 
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 
. (3.10) 

we lastly obtain 

 
1

1
E tan  


, (3.11) 

the same expression that is valid for the standard representation of the Schwarzschild 
model [39]. In addition, one immediately obtains with the help of the transformation (3.1), 
the connexion coefficients for the Schwarzschild standard form in tetrad representation  

 
2

1 1 1 1 M
cos , cos , cot , , cos (r) 1 2M r

r r r cos r
      


. (3.12) 

                                            
2
 Obviously, the quantities (3.9) have different signs in the two sheets. The reason is that the scale of r  is 

retrograde in the lower sheet and the signs of dr are different. On the two sheets the tangent vectors have 
opposite orientations. Identifying the two sheets one has to reverse the signs and the local directions of the 
lower sheet. 
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Having calculated all the basic quantities and basic relations of the model in 
isotropic co-ordinates, we find in accordance with the standard representation of the model 
and the Einstein-Rosen bridge that all these quantities have the same properties at the 
Schwarzschild radius. At this locus, any massive object falling towards the center of 
gravity, reaches the velocity of light, and the gravitational force is infinitely large. This is 
valid for both sheets of the bridge. The bridge is not traversable.  

Popławski identifies the region M 2 r    with the exterior field of a Schwarzschild 

black hole and 0 r M 2   as the interior of the black hole. The latter is regarded by him 

as the image of the exterior sheet. He performs a further co-ordinate transformation 

 
2M

r '
4r

  (3.13) 

leaving the form of the metric (3.2) invariant. This new co-ordinate has to be gauged in a 
similar way as r . He argues that ‘an infalling radial geodesic motion inside a black hole 
appears in terms of the new radial co-ordinate r' as an outgoing motion from a white hole’. 

Evidently, the region 0 r M 2   could suggest that the region for an assumed 

black hole is a finite region. On the other hand this region corresponds to the unlimited 
region 2M r    on the second sheet of the Einstein-Rosen bridge. This is a 

contradiction because no co-ordinate transformation can alter the geometric structure of a 
model. 
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The reason of this ambiguity is that isotropic co-ordinates are not faithful (Fig. 1). 
They are retrograde on the second sheet. Not gauging the co-ordinate axes nonlinearly 
with different gauges on the two sheets isotropic co-ordinates exhibit asymmetric features 
with respect to these two sheets. The use of isotropic co-ordinates might lead to 
misconceptions. 

 

 

4. CONCLUSIONS 

 

It is generally accepted that the equations of a gravitation model must be invariant 
under co-ordinate transformations. We examined the Schwarzschild model in three 
different co-ordinate systems, namely in Schwarzschild-standard co-ordinates, in isotropic 
co-ordinates, and in Einstein-Rosen co-ordinates. We emphasized particularly the 
behavior of the force of gravity and the velocity of a freely falling observer at the event 
horizon. At this position, the value of the velocity of a freely falling observer takes the value 
of the velocity of light in all three systems. The force of gravity blows up as well. It is to be 
concluded that the event horizon cannot be exceeded, either into a black hole or via the 
bridge of a wormhole. Further, it must be mentioned that the Schwarzschild inner region 
cannot be described either with the isotropic co-ordinate system or with the Einstein-
Rosen co-ordinate system. If one considers that statements can be made on the equations 
of a gravitational model independently of the co-ordinate choice, the Schwarzschild inner 
region must be excluded as a possible piece of the Schwarzschild theory. Therefore there 
is no evidence for black holes. 
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