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1. INTRODUCTION 

 

In this paper we will deepen the geometric background of a collapsing star and we 
will investigate its behavior at the event horizon in more detail. Special attention is given to 
the construction of the stress-energy-momentum tensor in the non-comoving system. 

The model of Weinberg describes a non-rotating star consisting of pressure-free 
incoherent matter collapsing in free fall. For the understanding of the model it is useful to 
apply geometrical methods. Since the star is to be surrounded by the static Schwarzschild 
field, we interpret the exterior space-like part of the model as Flamm's paraboloid and the 
interior geometry as a cap of a sphere which is attached to a suitable position on Flamm's 
paraboloid. During the collapse of the star the cap of the sphere slides down Flamm's 
paraboloid, while the exterior Schwarzschild field remains unchanged according to 
Birkhoff’s theorem. Based on this geometric model some relations which can be derived 
from the collapsing metric become obvious. They can be decomposed into components 
which can be attributed to the cap of the sphere or to Flamm's paraboloid, respectively. In 
addition, it will be explained by this view why the surface of the stellar object cannot go 
below the Schwarzschild event horizon. Certain limitations are associated to the scale 
factor, commonly used in literature, which we will discuss later on. 

 

2. THE GEOMETRIC FOUNDATIONS 

 

The line element of Weinberg, can be written in the form 

 2 2 2 2 2 2 2 2 2
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r '
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 
 
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 . (2.1) 

Therein  t 'K K  is the time-dependent dimensionless scale factor, which describes the 

collapse,  r ',t '  are the comoving co-ordinates. For the radial non-comoving co-ordinate 

 r r ' K   (2.2) 

applies. The relation of the time t'  to the non-comoving co-ordinates, however, has proved 
to be problematic. From the metric we read the 4-bein 
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0 const.R  is the radius of the cap of a sphere at the time t ' 0 , hence at the 

beginning of the collapse. The reciprocal 4-bein is easy to calculate due to the diagonality 
of the metric. Usually the force of gravity of a gravitational system is derived from the time-
like metric factor 

 
4 '

4 ' 4 '

4 '1' 4 ' 1'
4 '|1'

'A e e 'E    .  

Since the metric factor of the Weinberg-line element is 
4 '

4 'e 1 , there are no 

perceptible acceleration forces in the comoving system. It is 
1''E 0 . The collapse takes 

place in free fall. 

If we temporarily omit the primes which mark the comoving system the stress-
energy-momentum tensor has the simple form 

  mn mn 0 m nT pg p u u    ,  (2.4) 

where is p the pressure, 
0  the mass density, and 

mu  the velocity of the particles. From 

the conservation law 

    m m nm m

||m |m mn m | 44 0T T A T A T g p A pg A A g p 0, 1,2,3        

  
              

results with A g A  


   and 

44A 0   for the pressure the condition 
|p 0

 . Since the 

pressure in a collapsing object cannot be constant, the model must be pressure-less. 
Again, this is only possible for non-coherent dust, but only as long as the particles do not 
move too close during the collapse. The pressure-free state is a direct consequence of the 

ansatz 
4 '

4 'e 1 . The fact that the co-ordinate time t '   coincides with the proper time T'  of 

the observer is only valid for an observer which comes in free fall from infinity. This is 
evidently  not the case for the surface of the collapsing star. The use of the proper time of 
an observer who does not participate in the actual collapse ultimately leads to the violation 
of the addition theorem of velocities and to the destruction of the Lorentz relations, as we 
will discuss later on. 

Although the model of Weinberg already contains inconsistencies concerning its 
ansatz, we want to further explore the model, because it gives rise to several interesting 
mechanisms which can be stimulating in the construction of other models. Furthermore, 
when the surface of the object has reached the event horizon, the very problems known 
from the Schwarzschild theory occur. The collapse velocity reaches the speed of light at 
this location. 

The metric of the non-comoving system gives more insight into this problem 

 2 2 2 2 2 2 2 2 2 2

T(B) ds dr r d r sin d a dit         . (2.5) 

From this we  read the 4-bein 

 
2 3 41

1 R T R2 3 4 2
R

2
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e , e r, e r sin , e a ,
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
R

 . (2.6) 
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We have little reliance on the time-like metric factor 
Ta  which Weinberg has noted in his 

textbook. 
gR  is the radius of the cap of a sphere and is at the time t ' const.  at all points 

of the cap by definition equally large. It is closely linked with the radius of curvature of the 
Schwarzschild parabola on the boundary surface to Flamm's paraboloid 

 

3

g

g

2r

M
  . (2.7) 

If  
g  is extended to the directrix of the Schwarzschild parabola, then 

gR  is cut out on this 

straight line. In addition, we get from the properties of the Schwarzschild parabola the 
simple relation 

 

3

g

g g g

r
2 ,

2M
  R R  , (2.8) 

wherewith we have determined the radius of curvature of that cap which is matched to the 

Schwarzschild parabola. 
gr  is the radial non-comoving co-ordinate on the boundary 

surface. It changes its value during the collapse. 

With the polar angle   and 

 
gr sin R   (2.9) 

it is possible to bring the metric (B) into the form 

   2 2 2 2 2 2 2 2 2 2 2 2

g g g TB' ds d sin d sin sin d a dt         R R R . (2.10) 

In [2] we have derived the relation 

 3

g 0 0, r ' sin '  R K R R . (2.11) 

'  is the comoving polar angle. Thus, we also have for the metric (A) 

 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0ds d ' sin 'd sin 'sin d dt '           K R R R   (2.12) 

and with 
0dt ' d KR  a simple form for the line element   0ds t ' ds K , where 

0ds  is the 

line element at the time t ' 0 . 

For the understanding of the model, it is important to calculate the collapse velocity. 
From (2.2) one gets 

 dr dr ' r 'dt ',
t '


  



K
K K K  . (2.13) 

Thus, we can calculate components 

 1 1

1' 4 '

0

r ' 1
, i 1    K

R K
  (2.14) 

from the coefficients of the co-ordinate transformation i i

i ' |i 'x   connecting the comoving 

and non-comoving co-ordinate systems. This is possible because one knows from the 
solution of Einstein's field equations the relation 
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0

1 1
1  K

R K
 . (2.15) 

Transvecting the   with the 4-bein of the metric (A) or (B), respectively 

 
m i'm i

im' i '
m'

L e e    (2.16) 

one obtains a matrix which transforms the 4-bein of the two systems. It is the Lorentz 
transformation with the coefficients 

 1 1 4 4

1' C 4' C C 1' C C 4' CL , L i v , L i v , L         , (2.17) 

wherein is 

 R
C C I I I

I 0

1 r '
, v v 1, v


      

 K R
. (2.18) 

If one puts 
Iv  under the root and if one uses the relations (2.2) one has recognized with 

 2 2

I C I R I R
2

gI

1 r
, v v v , v

1 v
      

 R
 (2.19) 

that 
Cv  is composed of two velocities, but is violating Einstein's addition theorem of 

velocities. The latter would read as 

   R I
I R I R I C

R I

v v
1 v v , v

1 v v


     


 . (2.20) 

If the surface of the collapsing star has reached the Schwarzschild event horizon 

r 2M , it follows from (2.8) that 
g 2MR . The cap of the sphere is now a hemisphere and 

joins with its edge the circle at the waist of Flamm's paraboloid. If one allowed a further 
contraction, the cap of the sphere would unsolder from Flamm's paraboloid, the linking 
condition would not be satisfied any longer, the geometric picture would be destroyed. 

On the boundary surface the Lorentz factor 
R  is equal to 

 g

R

g

1

2M
1

r

 



   

and is imaginary for 
gr 2M  and also 

C  of (2.18). In addition, it can be seen from (2.19)

with (2.8) that the velocity of the boundary surface at 2M  reaches the velocity of light. 

Below the event horizon the star would collapse faster than light, gravity would be 
imaginary. 

We will avoid such considerations which are often made in the context of the 
Schwarzschild theory, and we will limit the range of validity of the model in such a way that 
the model remains in the causal region. However, such a forced restriction reduces the 
plausibility of the model. 

However, this limitation prevents the star from shrinking to a point singularity with an 
infinitely high mass density and infinitely high spatial curvature. Although this is a concept 
which many physicists admit, we are not prepared to join it. 
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From (2.19) one gets for the surface of the star 

 g

C

g

g

1 2M 1
v 1

r '2M
1

r'

  


K

 (2.21) 

and for g

Cv 1   the lowest value for K . At the beginning of the collapse is 
g gr r '  and 

therefore is 
Cv 0 . Thus, at t ' 0  the scale factor is 1K  and one has for it the range of 

validity 

 
g

2M
1

r '

  
  

  

K  . (2.22) 

Below we have plotted the velocity as function of r on the boundary surface for 

gr ' 10M . The slung behavior does not agree with a physical progression. 

 

 
 

It should also be noted that the collapse velocity which is composed according to 
Einstein's rules due to (2.20), provides a convincing progression. The use of the Lorentz 
relations and their integration with respect to the proper time of the freely falling surface 
would lead to a model whose surface needs an infinitely long time to reach the event 
horizon. It would correspond to a model called ECO (eternally collapsing object), proposed 
by Mitra [3]. However, an analytical solution with the ansatz (2.20) for the collapse velocity 
is not known. 
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3. THE FIELD QUANTITIES 

 

In [1] we have shown that in the comoving system the Ricci tensor takes on the 
form 

 

1

2 2

3 3

s ' s '

m'n ' ||s ' s ' m'n '

s ' s '

n '||m' n ' m' n ' m' ||s ' s '

s ' s '

n '||m' n ' m' n ' m' ||s ' s '

R 'U 'U 'U h

B B B b b B B B

C C C c c C C C

 
  

  

   
   
      

   
   
      

 . (3.1) 

Therein 

 m'n '

1

0
h

0

1

 
 
 
 
 
 

  (3.2) 

is a submatrix of the metric. 

  1'

m' 1'm' 4' 4' | 4 ' 4 '

1 i
'U 'A 0,0,0,'U , 'U , i

t '


       


K K

K K
  (3.3) 

is the field strength, which describes the collapse and 

 2' 3 'I I
m' 2'm' | 4 ' m' 3 'm' | 4 '

a a1 1 1
B 'A ,0,0, , C 'A , cot ,0,

r r r

  
       

   
K K

K K
  (3.4) 

are the lateral field strengths, the 

        m' m' m' m''m 1,0,0,0 , b 0,1,0,0 , c 0,0,1,0 , 'u 0,0,0,1      (3.5) 

are the unit vectors. The meaning of the graded derivatives 

        
1 2 3

s ' s ' s '

n||m n|m n'||m' n '|m' m'n ' s ' n '||m ' n '|m' m'n ' s ' m'n ' s 'U U , B B 'U B , C C B C 'U C        (3.6) 

is described in [4] in detail. 

It can be shown that the field equations in the comoving system have the same form 
as (3.1), if the graded derivatives are properly defined. Deriving the field equations we 
cannot rely on the 4-bein system of the non-comoving system, because we have left open 

the value for 
Ta . 

But we have a powerful method of calculating the field quantities in the non-
comoving system, avoiding the metric factors: the Lorentz transformation. Regarding 
(2.18) and (2.19) we are familiar with the velocity of the particles in the interior of the star, 
and with the associated Lorentz factor.  

The Ricci-rotation coefficients containing the field strengths transform 
inhomogeneously 
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s ' m n s' s s ' s ' s ' s

m'n' m'n' s mn m'n' m'n' s s '|m'

s m'n' s s ' s s s s '

mn m n s' m'n' mn mn s' s|m

'A L A 'L , 'L L L

A L 'A L , L L L

  

  
. (3.7) 

The last terms in each case we call Lorentz terms. With (2.17) we first compute 

 

4' 2 1' 2

4 '1' 1' C C|4 ' 1' 4 ' 4 ' C C|1'

4 2 1 2

41 1 C C|4 14 4 C C|1

'L 'L i v , 'L 'L i v

L L i v , L L i v

      

      
 . (3.8) 

The expressions can be clearly arranged: 

 s' s' s' s s s

m'n' m' n' m'n' mn m n mn'L h 'L h 'L , L h L h L     . (3.9) 

Intermediate steps are necessary for the calculation of the changes of the velocity. 
We remember that the collapse of the radius of the spherical cap is a time-dependent 

variable that enters into this calculation. Since this change of 
gR  is determined by the 

property of the Schwarzschild parabola, we separate the calculated results into a circular 
part as would be expected with a non-collapsing object and a parabolic part that stems 
from the collapse. First, one has for the two velocities, which make up the collapse velocity 

    I I

|m' I I |m C C C I I

1 1
v 1,0,0,0 a v , v ,0,0, i v a v

r r
      , (3.10) 

 

   

   

R R R
|m' C C C C C

g g

R R R
|m C C C C C

g g

a a
v ,0,0, i v 0,0,0,1 3i v

a a
v 1,0,0,0 i v ,0,0, , 3i v

   
          

      

   
          

      

R

R

 . (3.11) 

With some computational effort it follows from (2.19)  

 

   

 

   

 

C

|m' C C C R R R R2

C g C g

R
C

C

C

|m R R C C C R R2

C g C g

R
C C C C

C

1 1 1 1
v i v ,0,0, i v 0,0,0,1 3i v

a1
1,0,0,0 v

r

1 1 1 1
v 0,0,0,1 i v i v ,0,0, 3i v

a1
,0,0,i v v

r

 
       

    




 
        

    

  


R

R

 (3.12) 

and finally with (3.8) 

 

   

   

C P

m R R m C C C C R R

g g

C P

m' c C C R R m' C R R

g g

1 1
L 1,0,0,0 v , L ,0,0,i v 3 v

1 1
'L ,0,0, i v v , 'L 1,0,0,0 3 v

   
          

      

   
         

      

R

R

. (3.13) 

For the whole Lorentz term one obtains 
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 C P C P m'

m m' m m m' m' m' m' m m m'L L L 'U , 'L 'L 'L 'U , 'U L 'U        . (3.14) 

With this we have the tools in hand to calculate the missing quantities of the non-
comoving system. From the inhomogeneous transformation law (3.7) and (3.9) one gets 
the simple relations 

 
m' m' m' m m m'U U 'L , U 'U L    . (3.15) 

Now we are able to assort all the components of the U-quantities 

 

   

   

C P

m R R m C C C C R R

g g

C P

m' C C C R R m' C R R

g g

1 1
U 1,0,0,0 v , U ,0,0,i v 3 v

1 1
U ,0,0, i v v , U 1,0,0,0 3 v

 
        

  

 
        

  

R

R

 , (3.16) 

whereby we have again made the decomposition into a circular and a parabolic part. We 
also recognize that the U-variables are already included in the Lorentz terms 

 C C P P C C P P

m' m' m' m' m m m m'L U , 'L U , L U , L U       . (3.17) 

The lateral field quantities transform as vectors 

 m' m'

m m m' m m m'B L B , C L C   . (3.18) 

Thus, we have shown that it is possible to calculate all field quantities of the non-
comoving system without complete knowledge of the metric in the non-comoving co-
ordinate system. Now the question arises whether the metric coefficients of the non-
comoving system can be deduced from the previous results. In the above calculations we 
have repeatedly relied on the cap of a sphere as basic geometric structure and have 
written down a corresponding metric (2.5), (2.6), and (2.10). The space-like part of the 
metric is well known from other models, also the assumption that the radial metric factor 

(2.6) corresponds to the Lorentz factor of a motion 
R gv r /  R . 

With (2.18) and using (2.15) the components of B in (3.4) may be brought into the 
form 

   R
m' C C C

a
B ,0,0, i v

r
    ,  (3.19) 

whereby the familiar structures of the spherical geometry 

 R R
m m

a a 1
B ,0,0,0 , C , cot ,0,0

r r r

   
     
   

 (3.20) 

can be obtained for (3.18). Since 

 
1 R

1 |1
1

a1 1
B r e r

r r r r


  


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11

1R R R
1
e a , e 1 a     must be valid. Therefore the cap of a sphere is a suitable object to 

give the model a geometric basis. To approach the outstanding time-like metric factor, we 

calculate with 2

|1 |1

1
v v  


 and (3.11) 

 2 2

|1 R R C C R R

g g

1 1 1
v 3 v v     

  
 . (3.21) 

Using the relation 
g g2  R  one can write the quantity 

1U  in the form 

 2 2

1 R R C C R R R R

g g g

1 1 1
U v 3 v v v     

 R
. (3.22) 

It follows 

 1 T|1 |1 R R

T g

1 1 1
U a v

a
    

 
. (3.23) 

If one cannot express the last term as a gradient the non-comoving co-ordinate system is 
anholonomic. Then no relation can be specified between the co-ordinate times t and t'. 
From this example one can see the difficulty in finding suitable co-ordinate systems for 
collapsing models. By no means should one imagine that a model can be represented as a 
4-dimensional surface in a flat higher dimensional space, whereby the surface is covered 
by a Gaussian co-ordinate system, and one of these co-ordinates is the time co-ordinate. 

As regards the exterior Schwarzschild solution the space-like part of Flamm's 
paraboloid still fulfills our traditional concepts of the embedding of surfaces into a higher 
dimensional flat space. The time-like part of the metric needs a sixth variable, whereby two 
of these variables lie in one and the same dimension, so that the embedding into the 5-
dimensional flat space can be sustained. 

The complexities of the time-like part of the metric are to be taken into account if the 
interior solution of a collapsing star is to be linked to the exterior Schwarzschild field. This 
is a challenge for anyone who deals with this field of problems. 
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4. THE STRESS-ENERGY-MOMENTUM TENSOR 

 

The Ricci in the non-comoving system has the same shape as in the comoving 
system 

 

1

2 2

3 3

s s

mn ||s s mn

s s

n||m n m n m ||s s

s s

n||m n m n m ||s s

R U U U h

B B B b b B B B

C C C c c C C C

 
  

  

   
   
      

   
   
      

 , (4.1) 

if one appropriately defines the graded derivatives 

 
1 2 3

s s s

m||n m|n m||n m|n nm s m||n m|n nm s nm sU U , B B U B , C C U C B C       . (4.2) 

Therein is 

 s s s

mn m n mnU h U h U  . (4.3) 

In the previous Section we have calculated the field quantities by means of a 
Lorentz transformation. The stress-energy-momentum tensor of the non-comoving system 
can also be calculated with a Lorentz transformation 

 m'n'

mn m n m'n'T L T . (4.4) 

Since the stress-energy-momentum tensor in the comoving system has the only 
component 

 4 ' 4 ' 0 0 2

g

3
T ,   

R
  (4.5) 

one obtains for the non-comoving system 

 2 2 2 2

11 C C 0 14 C C 0 44 C 0T v , T i v , T          . (4.6) 

In particular, we are here interested in how the components of the stress-energy-
momentum tensor arise from the geometric components of the Einstein tensor. First, we 
calculate the quantities 

 

   

C P

R|m m m

R

C P

m R R m C C C C C R R

g g

1
E E

1 1
E 1,0,0,0 v , E i v ,0,0, 3i v v

  


   
          

      R

 . (4.7) 

With the parabolic part of the above relation and with P

mU  from (3.6) we finally obtain the 

desired relations 
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 

 

 

P 2 2 2 2

1 1 1 C C C C 0 112

g

P 2 2

1 1 4 C C C C 0 142

g

P 2 2

1 1 1 C C 0 442

g

3
B C E v v T

3
B C E i v i v T

3
B C U T

       

       

       

R

R

R

 , (4.8) 

whereby the remaining terms of the Einstein tensor are canceled. Thus one has worked 
out an interesting structure of the field equations of collapsing stars. 

 

5. SUMMARY 

We have geometrically deepened an understanding of the model for a collapsing 
star of Weinberg. We have found general structures which may be helpful for the 
construction of other models. 
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