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Abstract: Gravitation theory treated in Treder's version of Lorentz space is supplemented 
by a coordinate invariant variation principle. 

 

The advantage of representing gravitational physics using the Lorentz space, 
spanned by local tetrads instead of the Einstein space covered by coordinates, has been 
highlighted several times [1-5]. The Lorentz space as a family of location-dependent 
orthogonal 4-bein system allows index-wise space-time splitting. Thus, one can also 
separate physically interpretable variables from complicated complexes. Moreover, it is 
always assumed that exclusively covariant derivatives are used, and a 3-dimensional 
equivalent to these derivatives is defined. 

The field equations and their coordinate-invariant decompositions have been dealt 
with in detail in the literature; however, their derivation from a variational principle using the 
above-mentioned principles has not yet been tackled. 

Einstein's method uses the metric 
ikg and its derivatives as variables, according to 

which the fundamental invariant G  is varied, or the 
ikg  and a combination of the 

derivatives, the Christoffel symbols j

ik . However, if the g and   are considered to be 

independent of each other, one obtains the field equations much more quickly. This latter 
method is attributed to Palatini [6-8]. 

The metric and the Christoffel symbols are not apparently physically interpretable 
quantities; they are elements of the basic geometric structure from which the gravitational 
phenomena originate. The gravitational variables themselves are constructed from local 4-
bein systems, which, however, ‘nestle’ to the basic geometric structure. Thus, it is 
reasonable that changes in geometry, i.e., deformations of the underlying space, also 
affect those local systems that we understand as a direct manifestation of gravitational 
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physics. Therefore, it is to be expected that the field equations can be derived not only with 
Einstein's method but also with a method that corresponds to the induced changes in the 
local systems. 

Of the two types of systems, the holonomic system 
a

ie  is closely linked to geometry 

and is always chosen such that the reciprocal vectors 
i

a
e  (the index a = 1,...,4 numbers 

them) are tangent to a net of lines (a). If this is identical to the coordinate system (i), then 

one obtains: 
i i

aa
e   . The anholonomic system 

m

ie  is more closely related to physics. It is 

chosen in such that usually only one of the four reciprocal vectors 
i

m
e , (m 1,...4)  is tangent 

to the coordinate net, and the others are orthogonal to this and to one another. There have 
been several possibilities of choice and their usefulness in gravity models discussed in 
papers [4]. An anholonomic transformation mediates between the two systems as follows: 

 
a am mam

i a i i m ie A e , e A e  . (1) 

This has proved quite useful for implementing the variational principle with the 

quantities of 
m

aA  or 
a

mA , and in further aggregates built with their first derivatives, i.e., c

abH , 

or s

mnH , respectively. The 
a

mA  can be interpreted as gravitational potentials, the 3-rank 

quantities as gravitational field strengths, while the latter ones operate as coefficients of 
the holonomic and anholonomic connexion1: 

 
H A

A H A H

c s

a||b a|b ba c m||n m|n nm s

ab m n a b

m||n mn a||b abc mn {(a b)|| c} mns ab {m [n||s]}

V V H V , V V A V ,

V A V , H g A A , A g A A .

   

   
  (2) 

While performing a variation in the presence of a gravitational field, difficulties may 
arise which are unknown in other field theories. First, one is tempted to carry out the 
procedures with the usual partial derivatives. On the one hand, we are used to this 
procedure. On the other hand, there is a need for it, for example, in the treatment of 
surface integrals. However, expressions with ordinary partial derivatives are not covariant 
and do not describe any physical facts. However, it is quite easy to show that the following 
Lagrangians 

  
H

||ba a aa|b' ' , , ,
 
 
 

     L L L L  (3) 

lead to the same Lagrange equations: 

 
a a ||ba|b a||b|b

   
   
   
   

   
  

   

L' L' L L
. (4) 

The same applies to the anholonomic representation. In this manner, every matter field 
with a covariant set of formulae can be connected to the theory of gravitation. To get the 
covariant Lagrange equation, a partial integration has to be carried out, and a surface 
integral must be omitted. If one proceeds carefully, this procedure can also be mastered in 

the covariant representation. The integral 4

A
d x  describes a volume which is bounded by 

four normal vectors 
mdx . Thus, the following arises: 

                                            
1
 The curly brackets denote Christoffel symmetry. 
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 4 4 m

a
HA

d x A d x, A det A   . (5) 

The elements of the right integral are bounded by four holonomic, non-orthogonal vectors 
adx . The holonomy allows the integration to be executed. If one faces two tensors P , Q , 

the partial integration yields the following: 

 
H A AH

a a m m

||a ||a ||m ||mP Q P Q , P Q P Q ,     (6) 

where, in both cases, the surface integral 

   4a

|a H
AP Q d x  (7) 

is omitted. However, far more difficulties are caused by the non-interchangeability of the 
variation and the covariant differential operators: 

 
H A

,D 0, ,D 0      
   

. (8) 

Thus, from Eq. (3) one first arrives at 

 
H

H

a a||b

a a||b

   
      

   

L L
L .  

But because Eq. (8) we do not obtain Eq. (4), if the variation affects the gravitational field 

itself, i.e., c

abH 0  . For the derivation of the gravitational equations, one would have to 

take as variables the following: 

 
AH

m m a a

a a||b m m||nA , A , A , A . (9) 

However, to circumvent the outlined difficulties instead of taking (9) the following variables 
are used: 

 m c a s

a ab m mnA , H , or A , A . (10) 

Correspondingly, the Lagrange equations change, as described by Eq. (4). The 
implementation of the variation leads to Einstein's field equations in both the holonomic 
and the anholonomic cases. 

We derive the variation itself from a deformation of the geometry. This is created 
from a point transformation 

 a a b

bx e x ,      (11) 

with infinitesimal quantities 
b . A variable a  changes accordingly: 

 a a b a

b     . (12) 

However, we consider the point-transformed quantity from the point of view of the trailed 
curve mesh, which arises from 

  a ' a ' a a

ax x    . (13) 

The difference in   is the Lie differential, which we denote by  . Applied to the 

gravitational quantities, we get the aggregates as follows2: 

                                            
2
 The curly brackets mean Christoffel symmetry: 

 abc bac cab abc
       . 
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 

H

A

H A

a m a c

m b b ab a||b cab

a m m s

n a n mn m||n smn

c a

ec ab e} m ans {m[n||s}{ ab ||

A A , A ,

A A , A ,

g H , A A .

       

       

     

  (14) 

The 
ab mn,   describe a twist deformation of the 4-bein systems; its symmetrical part 

    
AH

(a ||b) (m ||n)ab mn
,        

is merely a deformation. Only the symmetrical part of the point transformation occurs in the 
Lagrange equation. Lastly, Einstein's field equations are symmetric in their two indices: 

 

   

   

ab cba ec d

H ab ab H abc e dc

mn r sn snm

A mn mn A rs n mns

1
2 g , A H H H H

2

1
2 g , A A A A A

2

 
       

 

 
       

 

G R R G

G R R G

. (15) 

The antisymmetric part 
mn [mn]    can be interpreted as a Lorentz rotation, and it leaves 

the Lagrange function unchanged: 

 
A 0


 G . (16) 

Thus, the fundamental invariant of the theory of gravitation is Lorentz invariant. The same 
must also apply to an extended Lagrangian that contains matter fields. Remarkably, 
Utiyama derived the existence of the three-rank quantity A in the opposite way, i.e., from 
the requirement of the Lorentz invariance of the Lagrangian of matter fields. Extending the 
ideas of Yang and Mills, such fields must be introduced as compensating auxiliary fields 
when gravitation acts on matter. Numerous authors have dealt with the extension of the 
Lorentz group S0(3,1) to the Poincaré group, e.g., Kibble [9] and Hehl et al. [10]. Deriving 
the gravitational equations directly from a gauge principle has also been the subject of 
many investigations. Cho [11] used the abelian translation group T4, which is quite close to 
our ideas, but the process requires the decomposition of the 4-bein field into a flat and a 
non-trivial part: 

 
m m m

i i ie B   .  

The latter is the gauge field, which transforms inhomogeneously under T4. 

However, we find that the quantities a

mA  have the desired inhomogeneous 

transformation behavior under the Einstein group. From Eq. (14) it follows: 

 a s s s n s s s m n

m a |m [mn] a |a [mn] aA A 2A or A 2A A          . (17) 

These relations are reminiscent of the gauge transformation of boson fields of the 
electroweak interaction, since the following is true: 

   s

m n [mn] s, 2A    . (18) 

The difficulties in presenting the theory of gravitation as a gauge theory probably lie 
in the vagueness of the separation between the internal group space and the external 
visual space. The latter is certainly the set of local spaces spanned by the anholonomic 

vectors 
i

m
e ; the index sequence  m,n,...  designates these spaces. As an internal space 

with respect to GL(4, R), one has to take the Riemannian V4 with the index sequence 
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 a, b,... . The Lie operation also acts on these indices. However, taking relation (1), terms 

such as external and internal can be mixed up at any time. In the papers of Cho, first an 
internal space is constructed with the instrument of fiber bundle geometry. Finally, this 
space is again equated with the external one by the identification of its elements with those 
of conventional Riemannian geometry. Derbes [12] pointed out the coexistence of the 
Einstein and Lorentz groups. We ourselves do not seek any group-theoretical deepening 
in this paper but only want to establish relations to familiar principles. 

 

I am grateful to Prof. Dr. H.-J. Treder for numerous comments on this paper. 
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