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1. INTRODUCTION 

In the last decades the problem of free fall has repeatedly been treated in the 
literature. Although there is general agreement that an observer who comes from infinity, 
reaches the event horizon with the velocity of light, it came to controversial views 
regarding the speed of an infalling observer who falls from a finite position to the center of 
gravity. We will again tackle the problem and we will show that an observer who comes 
from infinity or from any other position would reach the event horizon with the speed of 
light and therefore would need an infinite proper time. To overcome the problem, the 
knowledge of 1915 is sufficient. We only need the Einstein addition theorem of velocities 
and the velocity formula for the free fall in the Schwarzschild field. 

 

2. VELOCITIES IN THE SCHWARZSCHILD FIELD 

 

The actual problem consists in the fact that initially only the speed of an observer 
who comes from the infinite is known. It is determined by the Schwarzschild geometry as 

 
2M

v v(r)
r

   . (2.1) 

The velocity of an observer who falls from an arbitrary point can only be determined 
by a more complicated method. For this purpose we consider the following: 

An object coming from infinity has at an arbitrary point 
0r  the velocity 0 0v 2M r  . 

Another object is released from this point at the moment when the first object is passing 

this position. The difference in their fall velocity is 
0v  at this very moment. The difference 

decreases during the fall according to Einstein's composition law of velocities. The speed 
of the second object with regard to the static Schwarzschild system is calculated according 
to the relative velocity of the first object 

  
0

0

0

2M 2M

r r
v ' v r, r

2M 2M
1

r r

 
    

  



. (2.2) 

At the starting position one has  0 0v r , r 0 , at the event horizon  0v 2M, r 1  . 

Fig. 1 shows some examples. 
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Fig.1 

The top curve corresponds to the observer who comes from the infinite. 
In order to handle the velocity relations we introduce three reference systems: B being at 
rest in the Schwarzschild field, B' accompanying an observer with the speed v ' , and B" 
freely falling from infinity with the speed v. The systems are connected by the Lorentz 
relations 

 0 0
0

0 0

v v v ' v v v '
v ' , v , v

1 v v 1 v 'v 1 v v '

  
  

  
 , (2.3) 

      0 0 0 0 0' 1 vv , ' 1 v 'v , ' 1 v 'v               , (2.4) 

      0 0 0 0 0 0'v ' v v , v ' v ' v , v ' v v '              . (2.5) 

The observer B" does not change his position in the comoving system. Therefore, 
one has 

 
dx"

0, x " const.
dT ''

  , (2.6) 

where T" is the proper time of B". In view of the system B the velocity of B" is 

 
dx

v
dT

 , (2.7) 

if we use the proper time T of the static system. Applying the well-known relation 

 
dT

dT"
   (2.8) 

with  as the Lorentz factor of the transformation x x"  and by taking into consideration 

the relation dx dr  , one has 

 
dr

v
dT"

  . (2.9) 

The integral 
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3r 1 2r

T"(r) dr
2M 3 M

     (2.10) 

is an expression well known in the literature. It shows graphically a curve that runs from 
r 0  to infinity. The function provides for any point the time which the observer needs 

starting from r 0  to reach that point. Since there is invariance under time reversal, one 

obtains for the fall time a function which is infinit at r 0 . 

It should be noted that the curve of T"(r)  crosses the event horizon, although an 

infalling body would always reach the speed of light at the event horizon. The fall velocity  

 
2M

v(r)
r

   (2.11) 

can, mathematically, be extended into the inner region 0 r 2M   of the Schwarzschild 

solution. Thus, it is mathematically quite correct that the integral (2.10) also covers the 
inner region. 

Since physics forces us to exclude the inner region from the integration process, we 
use instead the standard Schwarzschild co-ordinates, the Einstein-Rosen co-ordinates1 
[1]. From the equation of the Schwarzschild parabola 

  2R 8M r 2M    

results 

 
2 2R 16M

r
8M


 , (2.12) 

wherewith we obtain  the singularity-free line element 

  
2

2 2 2 2 2
2 2 2 2 2 2

2 2 2

R 16M R 16M R
ds dR d sin d dt

16M 8M R 16M

  
       

 
 . (2.13) 

R 0  is the vertex of the Schwarzschild parabola and corresponds to r 2M . For R 0  

one obtains dx dR , the tangent of the Schwarzschild parabola at the vertex. On principle 

R cannot take values in the inner region of the Schwarzschild metric. 

It should be noted that neither r nor R corresponds to a physical distance. The 
physical distance from the horizon we get from 

 
r r

*

2M 2M

2M
1 1

2M rr dx dr r 1 M ln
r 2M

1 1
r

 
  

      
 
  

 

  . (2.14) 

This is the rectification formula for the Schwarzschild parabola. r and R are both 
auxiliary variables which define Cartesian co-ordinates in the higher dimensional 
embedding space. Both can be used to formulate the theory of Schwarzschild. For the 
velocity of free fall results 

                                            
1
The co-ordinates we use differ from the original Einstein-Rosen co-ordinates by the factor 8M . 
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2 2

4M
v(R)

R 16M
 


 (2.15) 

and has the value -1 forR 0 . With 

 
R

dr dR
4M

   

one first obtains by integration of 
1

dT" dr
v

  

  
3

2 2 2 2

2 2

R 1
f(R)= R 16M dR R 16M C

16M 48M
     . (2.16) 

If we choose the integration constant in such a way that we obtain for R 0  also 

T" 0  we finally have 

 T"(R) f(R) f(0)   , (2.17) 

a curve, starting at R 0 , ( r 2M ) and growing to the infinite. Time reversal results in the 

image that an observer incoming with velocity v(R) from infinity, takes an infinit time to 
reach the event horizon which he can never cross. 

It is more difficult to compute the time function for observers that are incoming from 

an arbitrary position 
0r . We have to use the relations 

 
dx dT

v ', ', x ' const.
dT dT '

     . (2.18) 

With 

 
dr

'v '
dT '


    

one has 

 
 0 0

1
dT' dr dr

'v ' v v


 
  

. (2.19) 

Integrating this expression one cannot prevent that r runs beneath the event horizon. 
Therefore, we recall the Einstein-Rosen co-ordinates. One has 

0

2 2

0
2 2 2 2

0

R 1 R
dT' dR

4M 4M 4MR 16M

R 16M R 16M


 

 

. 

After some rearrangement one obtains an integral of the type 

 
x 1

x x
dx x 2 x 2ln(1 x), x 1, lim dx

x 1 x 1
      

 
  .  

For 
2 2

2 2

0

R 16M
x

R 16M





 one gets the rise time f(R) . Starting up from R 0  and ending 

at 
0R  it increases to infinity. In this case it is simple to mirror the function in such a way 
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that an observer starting from 
0R  reaches the event horizon at R 0  after an infinitely long 

time. Replacing in the time function the variable R by 
0R R  the observer starts at 

0R R  

and passes through the fall distance at R 0 . One has 

 

 2 20
0 02

2 2 2 2 2 2

0 0 0

2 2 2 2 2 2

0 0 0

R
f(R,R ) R 16M

32M

(R R) 16M (R R) 16M (R R) 16M
2 2ln 1 C

R 16M R 16M R 16M


 

       
    

      





 .   (2.20) 

After a suitable choice of the integration constant 

 
0 0 0 0T'(R,R ) f(R,R ) f(R ,R )   (2.21) 

one gains the following plot 
 

 
Fig.1.The fall time near the event horizon 

 

In Fig. 1 marks the left vertical line the event horizon. It turns out that no object 
infalling from a finite or infinite position can reach the event horizon in finite proper time. 

From the previous considerations conclusions for a collapse of star can be drawn. 

The surface of a stellar object is located at the position 
0r , thus, even if one assumes the 

maximum speed of contraction, namely the free-fall, the object can never contract to the 
event horizon, or even fall below it. This will have far-reaching consequences for the 
theory of stellar collapse. Models that satisfy this condition have been proposed by Mitra 
[2-5]. 
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3. OUTLOOK 

Having calculated the velocities of an observer freely falling from an arbitrary 
position to a stellar object, we are able to investigate the accelerations and gravitational 
field strength acting on this observer. We will publish this elsewhere. 
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