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Abstract. The validity of the relativity of acceleration is investigated in view of 
Treder's theory of tetrads. Employing the methods of field theory, we analyze the effects of 
Newton's bucket and Sagnac's experiment. Moreover, the paper proves that the results 
yielded by the experiments mentioned, do not contradict the basic ideas of the relativity of 
acceleration. The principle of constancy of light velocity is also valid in general relativity. 

 

German title: Zur Relativität der Beschleunigung 

Inhaltsübersicht. Die Relativität der Beschleunigung wird im Lichte der Trederschen 
Tetradentheorie diskutiert. Die Erscheinungen des Newtonschen Eimerversuchs und 
Sagnac-Experiments werden feldtheoretisch untersucht und gezeigt, daß beide 
Experimente nicht im Widerspruch zur Relativität der Beschleunigung stehen. Das Prinzip 
der Konstanz der Lichtgeschwindigkeit behält auch im Rahmen der allgemeinen 
Relativitätstheorie seine Gültigkeit.  
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1. INTRODUCTION 

The relativization of the velocity concept and its consequences were profound 
changes which the theory of special relativity has caused in the field of physics. A further 
generalization in the sense of relativism would call in question the measurability of 
absolute accelerations. In the conventional formulation of general relativity, such a 
principle is not recognized. Foremost H.-J. Treder (1966/67) has shown that with a careful 
design of measurement specifications, the relativity of acceleration can be expressed in 
the context of general relativity. Treder's concept is mathematically reflected in the use of 
tetrads which constitute rods and clocks. 

Essentially two observations seem to contradict the principle of relativity generalized 
in such a way: Newton's bucket experiment and the Sagnac experiment. 

In the rotating bucket there occurs a peripheral raise of the water level, caused by 
the centrifugal forces which originated in the rotation of the bucket. Thus, the rotational 
motion should be an absolute motion, because such an effect cannot be observed in non-
rotating systems. A relativization of the path acceleration occurring during the rotation and 
the forces involved would imply that the same forces also occur if the bucket is at rest and 
the surrounding space is rotating around it. H. Thirring (1918a, b, 1921) has shown that the 
rotating fixed stars can produce centrifugal and Coriolis forces. These are certainly too 
weak to account for those phenomena in the bucket. However, a representation of the 
Einstein field equations in the Lorentz space (D.-E. Liebscher, H.-J. Treder 1970, R. 
Burghardt 1979, 1980) shows that non-linear field terms are present in these equations. 
These field terms are physically to be interpreted as gravitational energy and energy flow 
and are equivalent to the rotating masses of the fixed stars. Those energies exert forces of 
the required strength on then system located around the center of rotation. (In the 
mathematical analysis in Sec. 2 we will completely leave aside the fixed stars.) In the 
Lorentz space the field equations of gravitation take a Maxwell-like form, and the physical 
principles which are described by them also recall the theory of electromagnetism: The 
gravitational energy corresponds to a negative field mass (F. Hund 1947) which is 
repulsive and causes centrifugal forces, the flow of gravitational energy (Poynting vector) 
generates the Coriolis dipole field. The nonlinearity of the Einstein field equations is 
responsible for the field mechanism with back reaction and also leads to an extension of 
Mach's principle (H. Hönl, H. Dehnen 1966): The distribution of energy and momentum 
density of matter and the gravitational field alone suffices to determine the inertial forces in 
any reference system. 

The optical experiment of Sagnac (1913), the equivalent of the Michelson 
experiment is seemingly also a strong argument for the absoluteness of rotation: light 
beams are circling in opposite directions on a plate with a mirror system which is adjusted 
in such a way that the rays meet after a circulation and cause interferences. If the plate is 
rotated the interference fringes are shifted in dependence of the angular velocity. The 
cause is believed to be the following: the light has different velocities in opposite directions 
(M. P. Langevin 1921, 1937, E. J. Post 1967), thus indicating the absoluteness of the 
rotational movement. Only in the system at rest both light beams have the same velocity. 

Detached from this special experimental arrangement one could also argue that a 
uniformly moving observer that deviates temporarily from its straight path, changes 
permanently his philosophy: The principle of constancy of the velocity of light is only valid 
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for the straight parts of the route, any deviation from it leads to a violation of the principle of 
constancy. This possible consequence of the Sagnac experiment is not only unsatisfactory, 
but is also contrary to the principles of general relativity. Therefore we look for another 
interpretation of the undoubtedly observable fringe shift on the Sagnac interferometer: The 
experimental arrangement can be regarded as being relatively at rest, but it is orbited by 
gravitational energy. The forces arising from this energy lead to elongations and 
contractions of the optical paths and to changes in the physical time flow. Opposite beams 
take differing paths being responsible for the measured fringe shift. But for this they need 
times differently in length. The quotients of these paths and times, the velocities of light, 
are equal. Therefore the principle of constancy for accelerated reference frames applies 
and the relativity of rotational motion is ensured. In Sec. 2 and 3 we will show that it is the 
very gravitational forces that affect the Newtonian bucket and the light paths in the Sagnac 
experiment. 

In Sec. 4 the field equations for a rotating system will be discussed, in Sec. 5 we will 
take a brief look at a rotator with differential rotation law. 

 

2. ROTATING SYSTEMS 

 

To illuminate mathematically the mechanisms indicated in the previous Section, it 
would be useful to investigate a rotating solution of Einstein's field equations. We avoid the 
diversity of the known rotating models by taking the simplest system at hand: a family of 
rotating observers in the Minkowski space. Since the central mass is missing the Riemann 
curvature tensor vanishes. The model cannot be attributed either to the special theory of 
relativity, because it allows non inertial observer systems, or to the general theory of 
relativity, because the gravitational field is closely linked to the space-time curvature. The 
flat problem is merely the field theoretical formulation of the classical rotation problem, but 
it shows the essential structures of a rotating gravitation model. Because of its simplicity 
the effects of the forces on an experimental assembly can be described without special 
mathematical effort. Genuine gravity models can be reduced to this system. Thus, this 
simplification is justified. 

Our investigations are based on the Euclidean line element in spherical coordinates: 

 ( )22 2 2 2 2 2 2 4 4ds dr r d r sin d dx , dx idt, c 1= + ϑ + ϑ ϕ + = = .  (2.1) 

After a transformation into a rotating coordinate system with 

 tϕ → ϕ + ω   (2.2) 

the line element has the form 

 ( )22 2 2 2 2 2 2 4 2 4ds dr r d d 2i d dx dx−= + ϑ + σ ϕ − ωσ ϕ + α . (2.3) 

Here 

  r sinσ = ϑ   (2.4) 

is the radius of the parallels of latitude with respect to the equatorial plane and 
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 2 21 1α = − ω σ   (2.5) 

the Lorentz factor of a relative motion, still to be discussed. In the literature, the metric 
(2.1) is often associated with a physical system at rest, (2.3) however, with a rotating 
model. We want to notice that in both cases it is the same metric in two different 
representations. A coordinate transformation (which is in the present case a Galilean), only 
changes the description, but does not alter the physical situation. This problem is 
discussed in the appendix in more detail. The rotational motion which we want to analyze 
is not linked to the metric, but to an observer system (1 r, 2 , 3 , 4 it= = ϑ = ϕ = ) 

( )A  

1 2 3 4 4
2

1 2 3 3 4

1 2 3 4 4

1 2 3 3 4

e 1, e r, e , e i , e 1

e 1, e 1 r , e 1 , e i , e

= = = ασ = − αωσ = α

= = = ασ = αωσ = α
  (2.6) 

which arises from the system 

( )B  

1 2 3 3 4

1 2 3 4 4

1 2 3 3 4

1 2 3 3 4

e 1, e r, e , e i , e 1

e 1, e 1 r, e 1 , e i , e 1

= = = σ = − ωσ =

= = = σ = ω =
  (2.7) 

being global at rest and generated by a generalized Lorentz transformation { }i ,αωσ α with 

the relative velocity ωσ  dependent on σ  and  with the Lorentz factor α . The system A is 
not inertial, forces in it are measurable which we calculate using a methodology specified 
earlier (Burghardt 1979, 1980): The three-rank quantity A has with respect to the Lorentz 
space the components ( )1,2,3α = : 

 
2 3 4

2 3 4

4
4 4

A B , A S F , A E

A H , A H , A H
α α α α α α α

γ γ γ γ
αβ αβ β β α α

= = + = −

= = =
 , (2.8) 

wherin 

 ( ) { }1
1 ||

B S , S ln , sin ,cos ,0α α α α αα
= δ = σ σ = σ = ϑ ϑ   (2.9) 

are geometric quantities and 

 2 2 2
3E , H iα α α α= α ω σσ = α ωσ   (2.10) 

are the relativistic generalizations of the centrifugal and Coriolis forces. The centrifugal 
force is perpendicular to the rotation axis, the Coriolis force parallel to the axis, as is 
obvious by the dual form 

 2 2
1 2H i cos , H i sin= α ω ϑ = − α ω ϑ . (2.11) 

The quantities A are the coefficients of an observer invariant and coordinate independent 
transport law, which specifies a parallelism with regard to the 4-bein system  
( ) m  1,  2,  ...,4= : 

 s
m ||n m|n nm sv v A v= − . (2.12) 

The spatial part ( ) 1, 2,  3α =  

 |v v A vγ
α∧β α β βα γ= −   (2.13) 

is invariant with respect to three-dimensional observer transformations and is reduced in 
the non-relativistic case to the ordinary differentiation law in spherical coordinates. 
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The equation of motion 

 { }n 2
m||n mv v 0, v 1 1 v iv ,1α= = − −   (2.14) 

with v as the particle velocity splits after spacetime decomposition into the momentum and 
energy conservation law 

 
( )

( ) ( )
 grad  +   2

 gr

( ),

d ,a

= µ + ×

µ + µ = µ

v p p E v

v

H

v Eɺ

ɺ
  (2.15) 

where 0µ  is the rest mass of the particle and the correlations 

 2 2
0 0v , E , H i , p 1 v , 1 vα α αβ α µ − µ = µ −v E H v≙ ≙ ≙ ≙  (2.16) 

are used. The operator grad is explained by (2.13). The right side of the equations (2.15) is 
the Lorentz force density of the field and is responsible for the deviations from straightness 
of the particle path. 

 

3. THE EFFECT OF THE FORCES 

  

It is immediately apparent that the forces (2.10) are responsible for the phenomena 
on the Newtonian bucket. They were derived from the global rotating system A. Applying 
the same mathematical procedure to the global system B at rest no field strengths arise. 
Both systems are connected by the generalized Lorentz transformation 

 3 ' 4 ' 3 ' 4 '
3 4 4 3A A , A A i= = α = − = αωσ .  (3.1) 

(The indices refer to the Lorentz space.) The field strengths can be converted with the 
inhomogeneous transformation law 

 s ' n m s ' s s ' s
n 'm ' n 'm ' s nm s m'|n 'A A A A A= +   (3.2) 

mediating between the systems. The physical components in the system B vanish 
completely. We have referred to A as globally rotating and to B as globally at rest. 
However, this is a simplified way of expression related to classical mechanics. If our views 
on the relativity of the acceleration should survive, the terms rotating and being at rest 
must be interchangeable. To start with, it is only stated by (3.1) that the motions of the 
systems are relative to each other, whereby the relative velocity is not a constant of the 
transformation, but a vector which permanently changes its direction. (The angular velocity 
ω  is the third component of a Lorentz vector αω .) Considering A to be at rest and B to 
rotate, the expressions on the right side of (2.15) no longer have the classical meaning of 
pseudo-forces (Scheinkräfte), but act as external forces on the system at rest, caused by 
mechanisms of the rotating space. In the next Section this we will discuss in more detail. 

For the interpretation of Sagnac's experiment we must make use of the 
nonholonomicity of the observer system A. The non-commutativity of the partial derivatives 
in the Lorentz space results in the relation 

 r r r
|[mn] mn |r mn [mn]S , S AΦ = Φ = − . (3.3) 
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The Lorentz components of the position vector are not integrable: 

 
rr r m n

mnx d dx 2 S dx dx∆ = ∧ = ∧∫∫ ∫∫ . (3.4) 

It is sufficient to specify the components of S to a first approximation, whereby we 
temporarily abandon the natural unit system and replace ω  with cω . Then the Lorentz 
factor is 1α ≈  and 

 3 3 4 4
13 1 1 14 14 1 13 13

1
2S S F , 2S 0, 2S E , 2S 2H 2i c

r
= + ≈ = = − = − ≈ − ω .   (3.5) 

Following the path around the Sagnac disc in the direction of rotation, one has 

 3 3 1 3 3 1 4
1 13 14x 2 S dx dx S dx dx ∆ = + ∫∫ . 

Going back to the system at rest and finally using for integration the holonomic coordinates 
(i) of the Einstein space one obtains 

3
1x 2 r r t∆ = π − ω  

and for the path in the opposite direction of the rotation 
3
2x 2 r r t∆ = π + ω . 

The difference between the paths with different lengths is 

 s 2 r t∆ = − ω . (3.6) 

In the course of time 

( )4 4 1 3 4 1 4
1 13 14

r
x 2 S dx dx S dx dx 2i dr d t

c
ω

 ∆ = + = − ϕ − ω ∫∫ ∫∫  

different intervals arise depending on the sense of rotation (A is the circulated area) 

 2
1 22 2 2

A A
t r d 2 , t 2

c c c
ω ω ω∆ = − ϕ = − ∆ =∫ , 

if one returns to the starting point and performs a time comparison with a residual clock, so 
that one has 

 2

4 A
t

c
ω∆ =   (3.7) 

in compliance to J. F. Corum (1977). But we do not follow Corum, who reads from (3.7) a 
rotation-related change in the frequency of light. Frequency distortions would lead to 
disintegration of the fringe pattern on the interferometer. 

A light beam of the wavelength λ  and the oscillation period T covers the path nλ on 
the platform at rest and needs the time nT t= , so that 

 n cnT ctλ = = . (3.8) 

On the rotating plate  

 n c t∆ λ = ∆   

applies to the two counter-rotating beams with constant c, and if one takes advantage of 
(3.7) Sagnac's formula for the phase shift reads as 

 
4 A

n
c

ω∆ =
λ

. (3.9) 

It has no effect on the experiment whether we consider the platform as rotating or at rest. 
In both cases, it is the forces (3.5) that result from a relative acceleration and cause the 
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fringe shift. The principle of constancy of the velocity of light is fully applicable. From the 
metric (2.3) one takes for 2ds 0=  

 
223 4 4

3 3 4
3 3 4e dx e dx e dx 0   + + =      

 

while maintaining the system A. If one defines the velocity term stricly in the Lorentz space, 
then the coordinate invariant relation 

 
ˆ ˆ3 3

4̂

dx dx
i, c

ddx
= ± = ±

τ
  (3.10) 

applies to the circulating light beam with 
mm i

idx e dx=  
in accordance with the principle of constancy. 

 

4. FIELD EQUATIONS AND CONSERVATION LAWS 

  

The model that we treat as a substitute for rotating gravitational systems is flat. 
Therefore the relation 

 smnrR 0=   (4.1) 

is valid. However, if we continue the gravitation-like processing of the model, we have to 
investigate the vacuum field equations 

 mn mn mn mn

1
R 0, G R g R 0

2
= = − = . (4.2) 

Spacetime splitting provides 

 4 4

44 44

G 'G t 0,

R H t 0,

R E t 0.

αβ αβ αβ

β
α α∧β α

β
∧β

= + κ =

= + κ =

= + κ =

  (4.3) 

'Gαβ  is the mere spatial Einstein tensor. The stress tensor, the Poynting vector, and the 

energy density of the field are given by 

 
2 2

2 2 2 2
4 44

1
t E g E E E g E 2 H H g H ,

4

t 2H E , t H E , H H H , E E E .

γ γ
αβ α∧β αβ ∧γ α β αβ αγ β αβ

β αβ α
α αβ αβ α

    κ = − − − − −    
 

κ = κ = − = =
  (4.4) 

From 

 [smn]rR 0=   (4.5) 

the relations 

 [ ] [ ]E 0, H 0α∧β αβ∧γ= =  (4.6) 
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follow. The field equations can quite clearly be represented in symbolic form: 

 
2 2

rot 2 0, div 0,

div 0, rot 0.

+ × = =
+ − = =

H H E H

E H E E
  (4.7) 

In addition, the coordinate invariant differential conservation laws apply: 

 ( ) 2 2t 0, div  0, H — E 0
t
( )αβ

∧β
∂= × = =
∂

H E . (4.8) 

Field stresses, momentum, and energy can be localized. The structures (4.7), (4.8) also 
apply to genuine gravity models. The field mechanisms can easiest be discussed in the 
Maxwell form: The field energy 

( )2 2 4 2 2 2H E 2− = −α ω + ω σ  

is negative and repulsive. It is the source of the radial (irrotational) lines of the centrifugal 
acceleration E. The Coriolis field with the circular (divergence-free) H-lines is generated by 
the circulation of the field energy. The system itself on which the fields act will be 
considered at rest. It is the very structures (4.7) which encourage us to believe that the 
general theory of relativity can be understood as the relativity theory of the acceleration 
concept. 

 

5. DIFFERENTIAL ROTATION LAW 

 

Although Eqs. (4.7) are transpositions of relativistic mechanics, they cannot be 
correct. First, they do not represent a genuine gravitational model as a consequence of the 
additional condition (4.1) and they also contain the restriction const.ω = , so that the orbital 
speed ωσ  reaches at  1σ = ω  the velocity of light. For σ → ∞  the centrifugal and Coriolis 
forces take infinite values. The model had to be "cut off" at  1σ = ω  at least. To avoid such 
a radical strategy, some authors (Franklin 1922, Hill 1946, Trocheris 1949) tried to improve 
the situation with a differential rotation law. They put 

 ( )ω = ω σ , (5.1) 

wherein the angular velocity decreases with increasing axial distance. With a suitable 
choice of the function (5.1) the orbital velocity reaches the velocity of light only at infinity. 
Rotating gravity models partly include also the condition const.ω =  and must be "cut off". 
Therefore their physical usefulness is questioned. Other models like the solution of Kerr 
(1963) used the law (5.1), whereby the orbital speed approaches zero at infinity. As a 
consequence also the centrifugal and Coriolis forces vanish at infinity. This corresponds to 
the nature of a field theory. Putting the mass parameter of the Kerr model M 0=  one 
obtains a flat model with the differential rotation law 

 2 2 2a
, A r a

A
ω = = + , (5.2) 

wherein a is the linear eccentricity and (A, A, r) are the main axes of a family of ellipsoids 
of revolution. These represent the equipotential surfaces and coordinate hypersurfaces of 
an elliptic coordinate system. The use of elliptic coordinates (in the Kerr case these are the 
general Boyer-Lindquist coordinates) is almost mandatory if one wants to perform further 
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calculations. The constant a is at the same time a parameter for the angular velocity. The 
line element in elliptical coordinates (Krasinski, 1978) 

 ( ) ( )22 2 2 2 2 2 2 2 4ds A dr d d dx ,= ρ + ρ ϑ + σ ϕ +   (5.3) 

 2 2 2 2r a cos , A sinρ = + ϑ σ = ϑ  (5.4) 

is obtained by a simple transformation from Cartesian ones. 

If one reads from it the static 4-bein system, one can move to the stationary system 

 (L)    

1 2 3 4 3 4
2

1 2 3 3 4 4

1 2 3 4 3 4

1 2 3 3 4 4

2 2

1
e , e , e , e i , e i , e ,

e , e 1 , e , e i , e i , e 1 ,

A 1 1

= = ρ = ασ = − αωσ = αωσ = α
α

= α = ρ = α σ = αωσ = − α ω = α

α = ρ = − ω σ

  (5.5) 

with the help of a generalized Lorentz transformation. (5.5) can be obtained from the Kerr-
C system (Burghardt 1982) putting M 0= . When calculating the field strengths one has to 
take into account the differential rotation law: 

 |1 1 |22 , 0σω = − ωσ σω =  (5.6) 

with 

 { }|

1
r sin ,r cos ,0 , 1α

α α ασ = σ = ϑ ϑ σ σ =
ρ

 . (5.7) 

The system of the field strengths is analogous to (2.8)-(2.10), but several extra expresions 
occur using (5.6). For the field equations one obtains a structure similar to (4.3), whereby it 
is assured that for the rotator with a differential rotation law and at the same time for all 
rotating gravitational models that include such a law, the relativity of acceleration is 
guaranteed. 

 

 
APPENDIX 

 

In the literature on rotating systems often exaggerated views concerning the ability 
to read from the metric of a physical system, whether it is in a rotating state or not are 
presented.  

Starting from the Euclidean line element in spherical coordinates 

 ( )22 2 2 2 2 2 2 4ds dr r d r sin d dx= + ϑ + ϑ ϕ +   (A1) 

we get after a Galilei-like coordinate transformation 

 ' t, t t 'ϕ = ϕ + ω =   (A2) 

with the matrix (here all indices are coordinates indices of the Einstein space) 
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3 ' 3 ' 4 ' 4 '
3 4 3 4

3 3 4 4
3 ' 4 ' 3 ' 4 '

A 1, A i , A 0, A 1,

A 1, A i , A 0, A 1

= = ω = =

= = − ω = =
  (A3) 

the metric in the form 

 
( )22 2 2 2 2 2 2 2 4 2 4

2 2

ds dr r d r sin d ' 2i d 'dx dx ,

r sin , 1 .

−= + ϑ + ϑ ϕ − ωσ ϕ + α

σ = ϑ α = − ω σ
  (A4) 

We do not want to follow the literature concerning the common in assignment of (A1) to  
the system at rest and (A4) to a rotating one. Both metrics can describe both systems, the 
transformation (A3) will only lead to a physically meaningless change of the 
representation. The state of motion is solely determined by the choice of observer 
systems, thereby only a relative motion is described. As the metric of most rotating 
gravitational systems is described in the form (A4), we place the form (A4) also for all 
further considerations, if one demands holonomic coordinates for the reason of calculation 
processes. We omit the primes which denote the rotating coordinate system and we define 

the arc lengths mdx
∧

: 

 1 2 3 4 4dx dr, dx r d , dx r sin d , dx dx
∧ ∧ ∧ ∧

= = ϑ = ϑ ϕ = , (A5) 

where we use hats for the indices of the Lorentz space, if a particular distinction is 
necessary. According to 

 
mm i

idx e dx
∧

=   (A6) 

we read the connection quantities between the arc lengths and the coordinate differentials: 

 (S)                         
1 2 3 4

1 2 3 4e 1, e r, e , e 1= = = σ =   (A7) 

 
and we get the non-diagonal metric for the Lorentz space 

 2

4 43 411 22 33
g g g 1, g i , g∧ ∧∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

−= = = = − ωσ = α , (A8) 

whereby the latter is  related to the Einstein metric by 

 
m n

ik i k mn
g e e g ∧ ∧=  . (A9) 

The missing diagonality of the metric (A8) is accompanied by a lack of orthogonality of the 
bein vectors lying in the  coordinate axes of the system. Both have their origin in the fact 
that the vectors S are adapted to the rotating coordinate system whose t-lines are not 
orthogonal to the ( )r, ,ϑ ϕ -hypersurfaces. A spacetime splitting on the indices cannot be 

carried out casually. Therefore we can drop the system S being inappropriate and we split 
the metric (A4) of the Einstein space in such a way that either one of the two systems (2.6) 
or (2.7) arise. Now we can easily see that 

 
mn mn

g ∧ ∧ ∧ ∧= δ  , (A10) 

that is, the metric of Lorentz space is diagonal 1 and hence the spacetime splitting can be 
performed index-based. The systems A and B of Sec. 2 are connected by the generalized 
Lorentz transformation L according to (3.1). The system B (indices primed) can be 
converted into the system S with the Galilei transformation G: 
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m' mm'

i m ie A e=    

(G) 
3 ' 3 ' 4 ' 4 '
3 4 3 4

3 3 4 4
3 ' 4 ' 3 ' 4 '

A 1, A i , A 0, A 1,

A 1, A i , A 0, A 1.

= = ωσ = =

= = − ωσ = =
  (A11) 

The system A (indices primed) can be converted into the system S with a 
transformation F which is referred to as "system-conserving" by M. Strauss (1974): 

(F) 
3 '' 4 '' 3 '' 4 ' 1
3 ' 3 ' 4 ' 4

3 ' 1 3 ' 4 ' 4 '
3 '' 3 '' 4 '' 4 ''

A , A i , A 0, A ,

A , A i , A 0, A .

−

−

= α = − αωσ = = α

= α = αωσ = = α
  (A12) 

Both transformations do not lead to any new state of motion, but only to the somewhat 
unreasonable metric of the Lorentz space (A8), but they are part of the generalized 
Lorentz transformation 

 L F G= ⋅ . (A13) 

The correlations may easily be obtained from the scheme 

. 

I am grateful to Prof. H.-J Treder for suggestions to this paper. 
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