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Abstract: We calculate the field strengths of the Oppenheimer-Snyder model with the help
of tetrads and Ricci-rotation coefficients. We set up the field equations in a covariant
manner and we perform a [3+1] decomposition of the Einstein field equations.
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1. INTRODUCTION

In a previous paper [1] we have critically examined the model of Oppenheimer and
Snyder [2]. We have worked out that the model describes a collapsing stellar object that
initially has infinite extent. When it collapses it leaves behind a Schwarzschild field and its
surface reaches the speed of light at the event horizon of the Schwarzschild geometry. At
this location the gravity would be infinitely large. Due to these reasons the model is not
physically realistic. However, we will concisely calculate the field quantities and the field
equations. Despite the shortcomings inherent in the OS model, its detailed description can
be constructive. One can study mechanisms which are useful for other models.

2. PRELIMINARIES

OS have found a solution for the interior of a collapsing star. They have shown that
a matching of the Schwarzschild exterior at the surface of the star is possible. They have
treated the problem in comoving and non-comoving co-ordinates as well. We start with
comoving co-ordinates and we write down the metric for the interior using the results of
Os.

From the metric

2
ds? = %dr'%rzdgz +r2sin?9dg? —dt? 2.1)
we read the 4-bein
1 2' 3' . 4'
e, =—, €e,=I e,=rsing, e,=1 (2.2)

For the calculation of the field strengths it is easier to use the non-comoving radial co-
ordinate r instead of the comoving co-ordinate r'. The relations

1 3 1 1 1 ! r'3
r=A%%r, A=1—p—lt, py=2R, ‘Rg=1/2i. (2.3)
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are valid. The co-ordinate r is dependent on the time t', while r; is the value of the

comoving co-ordinate r' on the surface of the collapsing stellar object and is a constant. At
the beginning of the collapse we have

A0)=1, r =r'
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With the quantities



explained in paper [1], we are able to set up some formulae in a compact way of writing.
For further calculations we need several auxiliary formulae. With the help of the Lorentz
transformation

Li=o,, Li=—iayv, Li=iayv, Li=q, (2.5)

with the velocity of the particles in the interior of the stellar object and the associated
Lorentz factor

VAL (2.6)
R, r?
52
[ 9
one calculates for the non-comoving system
m=Lner, (2.7)
the change of the static radial co-ordinate
M = {1/,0,0,0}. (2.8)

The marker | will be omitted at the quantities v and o, because we are dealing exclusively
with the interior-OS solution in this Section. Similarly, one can determine the values on the
surface, if one uses the results of paper [1]

or or 0 o1 0 0
_9=0’ _9=V, R9=o’ &z_g, ﬂzo, ﬁz_g_ (2.9)
or' ot ¢ or' ot' 2 or' ot'
One gets
Fym = {—ocvvg,0,0,—iocvg}. (2.10)

The 4-velocity inside the object relative to the static system is

'u, = {—iOLV,0,0,0L}. (2.11)
Thus, one has
Ry = gi Uy Py =31 Uy, (2.12)
With (2.6) we get
Vin: :{—%,0,0,ivpi}:{%,0,0,ivpi}. (2.13)
g 9 g g

The change of v consists of a circular and a parabolic part. The spatial change of v takes
place when one proceeds on a radial line in the interior of the object at a particular time.
However, the change in time takes place, because the boundary of the sphere slides down
the Schwarzschild parabola with the curvature radius p, . In the static system one has

Vin = —L,O,O,O —3ivi'um. (2.14)
ARy P

In addition, this gives the values for the change of the Lorentz factor



Oy = —oc3vi,0,0,—iocavzi . Oy = —oc“vi—oc‘lvg’i,O,O,—Bioc"’V2i . (2.15)
Ry Pq Ry Pq Py

Thus, we are ready to set up the field equations in both systems. For the comoving
system, which we will treat below, a fairly simple structure of the field equations results.

3. FIELD EQUATIONS, COMOVING SYSTEM

With the help of the tetrads (2.2) we calculate the Ricci-rotation coefficients

U.=A.,'=-¢ée' B_.=A, *=-6,e C_=A,%=-¢é,e . (31

1j4 m 2'm

This results in

U, = {0, o,o,é}, B, = {%,0, o,—i?"}, C,. = {Fl,%cot 9,0,—%"} . (3.2)
Inserting v=-r/R, one has
U, =B, =C, = Rig (3.3)
With the unit vectors
'm,. ={10,00}, ‘b, ={0100}, ‘c, ={0,010} (3.4)

and the Ricci-rotation coefficients

s' _ s' s’ s'
A, =U,.," +B.,.,” +C_..
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Um'n'S' — lmm,Un. ImS' _ |mm' |mn'US'

. . | (3.5)
Bm-n.S — 'bm~Bn. |bS _ 'bm| |anBS
C InIS' — 'Cm-Cn. |CS' _lle ICn‘US'
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we form the graded derivatives

Ui =Ynes B =B =Usm™Bsr - Crupe = Conr =Yy Coe =B °Cyr - (3.6)

m'||n’ m'|n*? m'|[n’ m’'ln n'm s m'|[n’
1 2 3

With the submatrices of the metric

hm'n' = ' gm'n' = (37)

one finally obtains the Ricci



-h,, [ I +UsU }
[ i +Bu By } 'bn.'bm.[Bs'”S.+ BS'BS}

(3.8)
—[Cn e T CoCoy } 'cn.'cm.[Cs'”S.+CS'CS}
31, o
=—— = u U
2 {RS I: gm n m n :|
and
3
R=_". 3.9
% (3.9)
For the Einstein tensor one obtains
G, =0 G,, =0 G,,=-xy, o'=123" (3.10)
The pressure-free model contains only the time-dependent energy density
Ti =g (t')-
OS put
4 1 3 re
Ko =— G=+r*, F=-2{2M |—.
Mo =37 . G\, ocGjor 2 3
t'+— || t'+ g
F oF/or!
Since
G _ oG/or'
F OF/or'
one obtains respecting (2.3)
4 1 G_ 2]ry  py
KUy = — 5, —=—= -9
3( Gj F 3\2M 3
t'+—
F
With (2.4) one lastly gets
3
—. 3.11
Ko (RS ( )

The expression for the energy density is formally that of the interior Schwarzschild
solution. At the beginning of the collapse (t'=0) one has

A(0)=1, r,=r).
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The surface of the stellar object is located at infinity (r, =) as we have pointed out in
paper [1]. For (3.11) one can also write



2M
K},lo = 3—3 .
rg

Thus, the infinitely large object at t' =0 has vanishing mass density

Ho (O) =0 .
As a consequence of
8nk k
K=—, M=m—7
the relation
47
m= ?rjpo (3.12)

is valid, where m is the mass of the object which is enclosed by the sphere with the radius
r,- The conservation law leads to

- [ 0
T i =Hoa + Al =0, A, =U, +B, +C, = 3E’ Oy = ot (3.13)
Since
) TI
Uopm =10,0,0,-31=+, py, =—31=="U, (3.14)
0| { Rg 0| ,Rg

(3.13) is satisfied with (3.11).

4. FIELD EQUATIONS, NON-COMOVING SYSTEM

It is much more tedious to compute the field equation in the non-comoving system.
One has to start with the static 4-bein and has to calculate the field strengths in a similar
way as we have done for the comoving system. The 4-bein we have discussed in paper
[1]. Itis

1 2 3 . 4 , y-1

e=a, e,=r e=rsing, e, =a ﬁy” : (4.1)
1(rY r ' 1 [2M

y==2/| | —aje== L dy=Lar-— [Zlar. (4.2)
2(\ryg 2Mr! ry 2MY 1,

Reading from the last expression the values

_ 19y 4 Oy
y|1'_$ . t

—_— =6 —
o TWTE S
and subjecting them to the Lorentz transformation
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Li.z a, Li.= —iawv, Lf.z v, L3.= o 4.3)
with the parameters (2.6) one gets
Y= 0,

which facilitates the subsequent calculations considerably. It turns out that a negative
guantity is included in the field strengths, calculated from (4.1), last expression. It is very
similar to the Schwarzschild gravitational force. It is

r
g -t [ _QJ —ovl. (4.4)
rig 2M il Pq
2M
If we define the quantity
H, = lalm = El—30c3vi,0,0,—3iocavzi (4.5)
a Pg Py
and if we fall back to (2.10) and (2.15) for its calculation, we finally obtain
Aui=H, Ay=G,=E +H=—avr -3 | (4.6)
Pg Py
The lateral field quantities
B, ={i,0,0,0}, C. ={i,}cot8,0,0} 4.7)
ar ar'r
can easely be calculated with (4.1). Alternatively, we get the quantities from (3.2) with
B,=L"B, C, =L"C.. (4.8)

However, in general the field quantities transform inhomogeneously
AmnS — Lm'n's IAm-n-SI + LZLS'

mn s' nm *
Putting

U, ={0,0,0H,}, (4.9)

the field equations in the static system take a form similar to (3.8), but are enriched by an
expression containing the acceleration G

R..=-h,, [US”S+ USUS}

= Boym + Ban}—bnbm

B° + B° BS}
- - (4.10)
- Cn”m+CnCm}—cncm CS”S+CSCS}

3

| Goym + GnGm} —uu, | G* + GSGS}
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wherein the graded derivatives are constructed similarly to (3.6)



U =U Bm||n = Bm|n - UnmS Bs' Cm||n = Cm|n - Unmsc:s - BnmSCs

3 . (4.11)
= Gmm - BnmSGs - Cnms(zs

m||n min?
1

The underbars denote the purely spatial derivatives.
With the Lorentz transformation

Tow=Laon T, (4.12)

mn ‘'m'n'
we obtain the components of the stress-energy-momentum tensor for the static system

T, =-0Vu, T,=-id’vy, T,=d’y,. (4.13)
With these expressions and with the useful auxiliary relations

B, +BU,=0, [G,+GG,|+[U,,+U,U,]|= p—22
¢}

one can verify that the field equations are satisfied. The exterior solution, which matches
the interior solution also in the non-comoving system at the surface of the stellar object
need not be discussed. The problem has been treated in previous papers in detail, both
the system in rest and the comoving system.

The contraction speed on the surface of the stellar object is

v __r_g__/ﬂ
g rR - r
g g

in accordance with (2.6). This is the velocity of free fall in the Schwarzschild field for an
observer coming from the infinite. v, reaches the speed of light at r,=2M. The

corresponding Lorentz factor o, is infinite at this location. Both quantities v, and o, enter

into the field strengths (4.4) and (4.5). Thus, these forces are infinite at the event horizon.
Consequently, the OS-model has an event horizon at r, =2M. OS have given the non-

comoving co-ordinate time of the exterior as

t—3i(r'3/2—r3/2)—2 2Mr—2Mlnm

" 2./2m Jr+2M
It is the time the surface of the star, coming from infinity, needs to reach the position r. To
reach the event horizon at r = 2M the time t will be infinite. The same applies to the proper

time of falling objects, as we have shown earlier [3-7] for arbitrary objects. Thus, the OS-
star can never shrink to the event horizon. The formation of a black hole is not possible.



We have shown in two papers that the surface of the collapsing OS star has the
same fate as any object being in free fall in the Schwarzschild field. The star’s surface
reaches asymptotically the event horizon with the velocity of light in infinite co-ordinate
time and infinite proper time as well. At this location the gravitational field strengths blow
up. Moreover, the stellar object is infinitely large and its energy density zero at the
beginning of the collapse. Although the OS model is mathematically correct it cannot

5. SUMMARY

represent a physical object and cannot serve for a black hole.
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