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Abstract: We will reinvestigate the collapsing model of Oppenheimer and Snyder. We will 
show that the collapsing stellar object is infinitely large at the start of the collapse. It 
collapses in free fall and its surface reaches the event horizon after infinitely long proper 
time. 
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1. INTRODUCTION 

In 1939, Oppenheimer and Snyder [1] presented a paper now known as that paper 
which has given rise to the theory of black holes, although the term 'black hole' has been 
introduced much later. Moreover, the OS approach differs from current methods to 
implement black holes. The OS model is composed of a collapsing interior and an exterior 
solution, where the exterior part is the Schwarzschild solution, which is due to the Birkhoff 
theorem also valid even if the field generating stellar object collapses. Most approaches to 
a black hole do not use an interior solution. In this case the exterior Schwarzschild solution 
or the exterior Kerr solution is extended beneath the event horizon. The inner region of this 
solution is to describe a black hole. 

The OS model is based on an existing solution by Tolman [2]. The stellar object is 
made of pressure-free dust with homogeneous density. Since in this case, the internal 
resistance against a contraction is missing, the object cannot be static. It collapses as a 
consequence of its own gravitational attraction. 

A completely pressure-free star is not physically realistic, as pressure can be 
expected at a sufficiently high density. A pressure-free stellar object may approximately 
describe a dying star. If the thermonuclear processes are exhausted inside a star, they 
give way to the star’s own gravitational attraction, and the star collapses. The just-
discussed simplification to p 0  is primarily on practical grounds. The integration of 

Einstein's field equations without this condition leads to considerable difficulties, and it is 
hard to find an analytical solution. 

In addition to these above-mentioned limitations the OS model permits further 
criticism. The star collapses with the velocity of observers coming in free fall from infinity. 
The stellar object at the time t 0  would have been infinitely large. We will work out this in 

the following. Mitra [3] has shown that inconsistencies in the OS model can only be 
resolved if the mass of a hypothetical OS black hole is M 0 . However, a massless star is 

contrary to the widespread opinion that black holes are supermassive objects. For these 
and other reasons which we will point out the OS model does not provide an appropriate 
basis for a black hole. 

 

2. THE OS INTERIOR SOLUTION, BASIC RELATIONS 

 

The first considerations are closely related to the original paper by OS, but we have 
to introduce auxiliary variables which are in close connection with geometrical quantities. 
Both, the interior and the exterior solutions are treated in two different co-ordinate 
systems: the one is comoving with the collapsing matter and the other one is not 
comoving. It is the very transition between the two systems which brings insight into how 
the collapse proceeds, and thus, sheds light onto the inconsistencies of the model. 

For the comoving and for the non-comoving co-ordinate system we use the 
notations 

    r ', , ,t ' , r, , ,t    . (2.1) 
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In the comoving system we write the line element according to OS as 

      2 2 2 2 2 2ds e dr ' e d sin d dt ' , r ',t ' , r ',t '              . (2.2) 

For the two metric factors OS put 

  
2

4 3 1
e G Ft ' , e e

4 r '

    
    

 
, (2.3) 

wherein one has for the interior solution 

 
3

3

3

g

3 r '
G r ' , F 2M

2 r'
    (2.4) 

with 
gr ' the value of r '  on the surface of the stellar object, i.e. at the boundary of the 

interior and exterior solutions. We note the auxiliary variables 

 

3

g

g g g

g

r ' 3
, ' 2 , 1 t '

2M '
     


R' R' . (2.5) 

As in the non-comoving system the lateral part of the metric has the form 

  2 2 2 2r d sin d    ,  

and this form is conserved under a co-ordinate tranformation between these two systems. 
A comparison with (2.2) gives 

 2r e  . (2.6) 

With (2.3) and (2.5) we obtain the relation 

 2 3r r '   . (2.7) 

From the point of view of the co-moving observer the radial co-ordinate of the 
surface does not change 

 
g gr ' r '

0, 0
r ' t '

 
 

 
. (2.8) 

For the quantity   one gets the relations 

 
g

3
0,

r ' t ' '

 
  

  
, (2.9) 

which we need for some calculations. For the radial co-ordinate of the non-comoving 
observer system one gains, taking advantage of (2.7) and the above formulae, 

    g g g2 3 2 3

g g

g g

r r r 2M
r ' 0, r '

r ' r ' t ' t ' r

  
        

    R
. (2.10) 

In this calculation the relations 

 
g g g g,    R R' '  (2.11) 
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have been used which can be verified with (2.5) and (2.7). Thus, we have also motivated 
the introduction of these auxiliary variables. 

 

32r

M
 

 (2.12) 

is the curvature radius of the Schwarzschild parabola. 
gR  has half the length of 

g , the 

curvature vector at the boundary. If one extends the curvature vector of the Schwarzschild 
parabola to the directrix of the Schwarzschild parabola, the resulting distance between the 
Schwarzschild parabola and the directrix has the length 

 
3r

2M
R  . (2.13) 

(2.11) refers to the values on the boundary surface. The quantities occurring in the 
OS model allow a geometric interpretation which facilitates the understanding of the 
theory. Since the proper time T' coincides with the co-ordinate time t' in the comoving 
system, the second relation (2.10) can be written as 

 
g

g g

g

r 2M
v , v

t ' r


  


 (2.14) 

whereby 
gv  is the velocity of an observer who is in free fall in the Schwarzschild field, 

coming from the infinite and reaching the surface of the stellar object. However, this means 
that the surface itself has this speed and must come from infinity. After a brief calculation 
we found out an inconsistency of the OS and model. This problem will be represented in 
detail later on. 

Using (2.10) the changes of further variables which relate to the surface can be 
calculated. We summarize the results with 

 
g g g g g g

g

r r 3
0, v , 0, , 0, 3

r ' t ' r ' t ' 2 r ' t '

     
       

     

R R
. (2.15) 

In the next step we calculate the changes of the relevant variables in the interior of the 
stellar object. From (2.7) and (2.9) one gets 

 2 3

I

g

r r r r
, v

r ' r ' t '

 
     

  R
. (2.16) 

Iv  is the speed in the interior, i.e. the speed with which the particles draw near in the 

interior during the collapse. The velocity decreases linearly inwards, and in the center of 
the object one has 

  Iv 0 0 . (2.17) 

Finally, the second relation (2.3) should be resolved. According to (2.16) one has 

 
2e r

r ' r '





  

and at last 
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2

4 3

2

r
e

r '

    . (2.18) 

Hence all the metric coefficients of the inner OS solution can be written in a form that 
simplifies the further considerations 

 
2' 3 ' 4 '1'

1' ' ' '2 3 4

r
e , e r, e r sin , e 1

r '
     . (2.19) 

The metric can be written either as 

 
2

2 2 2 2 2 2 2 2

2

r
ds dr ' r d r sin d dt '

r '
        (2.20) 

or as 

 2 4 3 2 2 2 2 2 2 2ds dr ' r ' d r ' sin d dt '          . (2.21) 

The latter form is entirely written in comoving co-ordinates and the factor   contains the 
time dependence of the otherwise ‘flat’ 3-dimensional line element. 

 

3. THE OS INTERIOR SOLUTION, CO-ORDINATE AND 
REFERENCE SYSTEMS 

 

In the previous Section we have already made use of the variable r which 
designates the radial co-ordinate in the non-comoving system. OS have specified the 
relation of t' and t. Thus, a matrix can be assembled for the transformation between the 
two co-ordinate systems. The finding of such a transformation is obviously quite tedious. It 
is probably for this reason that other authors did not provide such a co-ordinate 
transformation for their models, or the putting up of a co-ordinate transformation was not 
possible because the model has no analytical solution. The use of different co-ordinate 
systems is apparently the only purpose of providing calculations on the simplest possible 
basis. The great advantage lies in the fact that such a co-ordinate transformation is 
accompanied by a Lorentz transformation which contains the velocity parameters. If one 
has found such a Lorentz transformation, and  if one refers to the velocity of the surface of 
the stellar object, one has the physical velocity of the collapse at hand. 

In the last Section we have already prepared the way for a Lorentz transformation. 
From (2.16) and (2.19) we obtain 

 1' 4 '

I I

g g

r r r
dr dr ' dt ' dx iv dx , v

r '
     

R R
, (3.1) 

wherin the  1' 4 'dx ,dx  are the anholonomic tetrad differentials. By means of an auxiliary 

variable 

 

2

g

2

g g g

r '1 r ' r r ' 1 2M
y 1 , dy dr ' dt '

2 r ' 2M r ' r ' 2M r

  
      
    

 (3.2) 
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and from 

  
3 23 2

g

y 13 1
t r ' 2M 4M y 2Mln

2 2M y 1

    
  

 (3.3) 

one gets, by differentiating, 

 
3 2 3 2

g g

y r ' 2M y
dt 2M dr ' dt '

y 1r ' r y 1
  

 
 . (3.4) 

From this one can read the transformation coefficients of the co-ordinate trans-
formation 

 i i

i ' |i 'x  . (3.5) 

Since the coefficients are orthogonal, one gains also the reciprocal values 

 

3 2 3 2
1 1 4 4

1' 4 ' I 1' 4 '2

g g g

g1' 2 4 ' 2 1' 2 4 ' 2

1 I 1 I I 4 I 4 I3 2 3 2

g

I I
3 2

g

3 2

g g

r r y r ' y 2M
, i iv , 2Mi ,

r ' y 1r ' y 1 r

rr ' y 1r ' y 1
, i v , i ,

r y r y 2M

1 1 r
, v

2M r ' r
1 1

r r '

          
 

 
             

    

 

R

R

R

 . (3.6) 

In these expressions all indices are co-ordinate indices. From 

 ik i k i 'k '

i 'k 'g g    

and (2.19) can be calculated the 4-beine i

m
e  and from these the reciprocal ones 

 
2 3 41 g

1 I I2 3 4 3 2

r y 1
e , e r, e r sin , e

2M y


        . (3.7) 

The indices m number the 4-beine of the reference system which is associated with the 
static observers. Now it is easy to calculate the corresponding Lorentz transformation 
connecting the comoving observers and the observers at rest 

 

m i'm i
im' i '

m'

1 1 4 4

1' I 4 ' I I 1' I I 4 ' I

L e e

L , L i v , L i v , L

 

        

. (3.8) 

Thus, one has the physical quantities describing the collapse at hand. On the 
surface one has with 

 

g

41 gg g

1 I I42 2
gg g

2
gg

r
1

r1 1 2M2M
e , e 1

2M r2Mr r11
r 2M



       

   
 R
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the Schwarzschild values of the exterior field on the surface of the stellar object. Thus, the 
two solutions are matched on the boundary surface. 

For the velocity on the surface one obtains 

 
gg

I

g g

r 2M
v

r
   
R

, (3.9) 

the velocity of an observer who is in free fall from infinity. Thus, we have once again 
proved by using physically relevant equations that the surface of the stellar object 

collapses in free fall from infinity. From (3.9) we also recognize that for 
gr    the initial 

velocity is g

Iv 0 . The OS stellar object in its initial state would have an infinitely large 

extension, collapses in free fall and leaves empty space behind it in which a Schwarzschild 

field spreads. However, the collapse velocity would reach the speed of light at 
gr 2M  

which has to be ruled out by the principle of relativity. At this location the gravity and tidal 
forces would be infinitely large. Under these conditions a star cannot exist. The OS model 
is afflicted with all those problems which are known from the Schwarzschild theory. 
Consequently, the OS model cannot be used as a base model for a black hole. 

 

4. THE OS EXTERIOR SOLUTION 

 

For the exterior solution OS start from the same metric (2.2) with the ansatz (2.3)
where now 

 
3

3 3 3 2r '
G r ' , F 2M, 1 t ', '

2 ' M
       


 (4.1) 

and the following auxiliary formulae 

 
5

9 2M 3 2
t ', ,

r' 4 r ' t' ' r' r '

  
   

    
 (4.2) 

apply. After similar calculations such as we have performed for the interior solution we 
obtain the tetrads in the comoving system 

 
1' 2' 4 '3 '1 3

1' 2' 3 ' 4 '

r '
e , e r, e r sin , e 1

r

        (4.3) 

and from 

 2 3r r '   (4.4) 

the auxiliary formulae 

 E

r r ' r r 2M
, v

r ' r t ' r

 
     

  R
 , (4.5) 

in which we recognize the Schwarzschild velocity of free fall from infinity. OS put for the 
time of the static system 
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  3 2 3 2 r 2M3 1
t r ' r 2 2Mr 2M ln

2 2M r 2M


   


 . (4.6) 

With (4.4) and (4.1), last equation, one has 

 

2 3

3

M
r 1 3 t ' r '

2r '

 
   
 

.  

Isoliating t 

  3 2 3 22 1
t ' r ' r

3 2M
   (4.7) 

we finally obtain 

 

2M
1

rt ' t 2 2Mr 2M ln
2M

1
r



  



, (4.8) 

the formula for the transition from the static Schwarzschild time co-ordinate to a time co-
ordinate which refers to an observer who is in free fall from infinity. The relation originally 
was found by Lemaître. By a gauge transformation of the radial co-ordinate 

 3 22 1
r '' r ' , t '' t '

3 2M
   (4.9) 

one obtains with 

 
1'

1'

r ' 2M 2M
e dr ' dr '' dr ''

r r ' r
    

the relation 

 1''

E E

2M
dx v dr '', v

r
     , (4.10) 

well-known from the Lemaître transformation as well. 

After recasting one can specify r as a function of the Lemaître co-ordinates 

  
2 3

3
3

r 2M r '' t ''
2

 
  

 
 (4.11) 

and can write the curvature radius of the Schwarzschild parabola as 

  3 r '' t ''    . (4.12) 

Thus, we have explained the OS co-ordinate transformation as a Lemaître transformation.  
With the help of (4.5) and by differentiating (4.8) we evaluate the coefficients of this 
transformation. By transvecting with the 4-bein of the comoving system 

 
1'' 4 ''

1'' E 4 ''e v , e 1    (4.13) 

and the 4-bein of the static Schwarzschild system 
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1 4

1 E 4 E

E

1 1
e , e ,

2M
1

r

    




 (4.14) 

we obtain the coefficients of a Lorentz transformation 

 1 1 4 4

1'' E 4'' E E 1'' E E 4'' EL , L i v , L i v , L          . (4.15) 

In these coefficients are included the physical components of the relative velocity 
Ev  of the 

two systems which we refer again to the surface of the stellar object. One has 

 g

E

g

2M
v

r
   . (4.16) 

In accordance with previous results the surface has always the speed of an object coming 

in free fall from infinity. At 
gr 2M  arise the well-known Schwarzschild problems. 

 

5. SUMMARY 

The solution of Oppenheimer and Snyder is an analytical solution of the Einstein 
field equations which describes alike the interior and the exterior of a stellar object. It has 
the deficiency of being restricted to pressure-free matter. It is physically unrealistic since 
the stellar object is infinitely large and its matter is infinitely thinned at the time t ' 0 . The 

collapse takes place in free fall. The surface of the object can only asymptotically approach 
the event horizon, the formation of a black hole is not possible. 
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