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Abstract: We refer to a recently published paper by Melia concerning the Local Flatness 

Theorem. We argue that Melia’s claim that the timelike metrical coefficient 
t tg 1  is closely 

connected with the equation of state 
0 3p 0    is based on a mathematical artifact.  

Melia’s model is analyzed using coordinate independent methods and is compared with 
our Subluminal Model. 

 

1. INTRODUCTION 

Melia published a paper recently [1], wherein he derived the equation of state (EOS) 
of his Rh=ct model resorting to the Local Flatness Theorem. Performing a gauge 
transformation of the time variable in the comoving system of this expanding model, he 

putatively proved that the timelike metrical coefficient 
t tg 1  is only satisfied if the EOS has 

the form 
0 3p 0   . We recall that all cosmological models expanding in free fall have 

t tg 1 . We refer to the Friedman cosmos and the dS family. They have different EOS and 

no relations can be deduced from 
t tg 1  and the specific EOS of the models. 

In Sec 2. we show that the gauge transformation of the time variable results in a 
mathematical artifact. We study the field quantities and field equations of Melia’s flat space 
ansatz and calculate the pressure and mass density of the cosmic fluid. In Sec. 3 we 
compare Melia’s model with our Subluminal Model [2] and conclude that the Rh=ct model 
is not globally flat but locally flat, and thus identical with our globally curved Subluminal 
Model. In Sec. 4 we treat this in greater detail. 
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2. THE GAUGE TRANSFORMATION 

Melia starts his argument for the need of a gauge transformation with a 
transformation of the time variable 

  tt ttdt g dt, L t g  , (2.1) 

L  being the lapse function of the metric 

    
2 2 22 2 2 1 2 3ds L t dt a(t) dx dx dx    . (2.2) 

The metric is written in a manner that suggests a flat expanding cosmological model, a(t)  

being the time dependent scale factor. We analyze this ansatz in more detail.  

For better processing and for comparing Melia’s model with our Subluminal Model 

[2], we change the notation. We use the original Minkowski notation with 4 0x ix i(c)t  , 

define 2l L , and relabel    a t tK  to avoid confusion with a quantity we use later on. 

Thus, we arrive at 

  
2 2 2 22 2 1 2 3 2 4ds dx dx dx l dx   K . (2.3) 

Melia evaluated the Christoffel symbols for the metric (2.2). Rewriting his results 

with the Minkowski notation and correcting for a missing factor of 1 2  we get 

 

1 2 3

14 24 34 |4

4 4 4

11 22 33 |42

4

44 |4

1

1

l

1
l

l

     

      

 

K
K

K K . (2.4) 

Here, all indices are coordinate indices. 

We daresay the choice of coordinates is quite arbitrary, and a matter of 
convenience. It is evident that the components of the Christoffel symbols are not 
measured values, i.e., they are not quantities resulting from the use of rods and clocks. To 
get coordinate invariant quantities one has to use the Ricci-rotation coefficients. They are 
independent of the coordinate system in use and are calculated on the basis of tetrads, 
i.e., rods and clocks. Moreover, one has to use the Minkowski notation to obtain consistent 
results. 

Eq. (C) in the appendix provides the relation between Ricci-rotation coefficients and 
Christoffel symbols. First, we read from (2.3) the tetrads 

 

41 2 3

1 2 3 4

1 2 3 4

1 2 3 4

e e e e l

1 1 1 1
e , e , e , e

l

   

   

K , K , K ,

K K K

 (2.5) 

and perform the following operations 
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11 4 41 1

14 1 14 |4 |4
1 4 4

41 14 4

11 4 11 |4 |42 21 1

444 4 44 4

44 1 44 4 4 |4 |4
4 4 4|4 |4

1 1
A e e e e

1 1 1
A e e e l

l

11 1 1 1
A e e e e e l l l l 0

l l l l l

   

 
      

 

 
        

 

K K
K K

KK K
K K

 . (2.6) 

Here, we used the underbar for coordinate indices to distinguish them from tetrad indices 

and respected the relation 
4

4 4 4
4

1
e

l
     . The relation 4

44A 0  was to expect, because 

the Ricci-rotation coefficients have the symmetry property 
 m ns

A 0 . It shows that the 

quantity |4

1
l

l
 cannot be measured with rods and clocks in an orthogonal reference system 

and thus is a mathematical artifact. One cannot make physical conclusions from a gauge 
transformation of the time variable, using orthogonal reference systems instead of 
coordinate systems. 

Mitra [6][7] analyzed the coordinate freedom of time in a most general way, starting 
with a metric for a spacetime: 

 
     r,t r,t r,t2 2 2 2ds e dr e d e dt
  

    ,  

where /2e  is the invariant circumference, also called the area coordinate, and   is the 
solid angle of a 2-sphere. If the parameters in this general metric remain to be time-

dependent, they could describe an expanding universe. Then, r  and t  are interpreted as 
comoving coordinates. Demanding the cosmic fluid to be perfect, isotropic, and 
homogenous one can start with the stress-energy-momentum tensor 

11 22 33 44 0T T T p,T     . This choice constrains the parameters of the metric. 

Mitra solves the field equations under the assumption that there is no radial heat 

flow ( 14T 0 ) but spatial homogeneity (   '
0 0 ot , 0     ). Thus, the metric takes the 

following form 

 
 t2 2 2 2ds e dr e d e dt
     ,  

wherein e
 and e

 have the well-known FRW values. Invoking the coordinate freedom of 
time1 

  t t t ,  

one can put 0   without loss of generality. No physical issue is connected with this 
restriction in contrast to Melia’s statement. Finally, Mitra arrives at the standard FRW 
metric. 

The fact that 44g  is independent on r  underlines that no acceleration (force on the 

unit mass) emerges. Moreover, Mitra differentiates the Friedman equation and obtains the 
acceleration equation of the FLRW model: 

  0

4
3p

3
   

K
K

.  

                                            
1
 For more details, please refer to the papers of Mitra [6][7]. 
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Since no acceleration occurs in the employed system, one has 0K , and finally, the 

EOS 

 
0 3p 0   ,  

valid for both Melia’s and our Subluminal Model. Thus, the structure of the EOS is not 
connected to a gauge of the time coordinate but is a result of Einstein's field equations and 
the conservation law. 

 

3. THE FIELD EQUATIONS 

Having translated the description of the basic equations of the model into a 
coordinate independent form, we can proceed with the metric 

  
2 2 2 22 2 1 2 3 4ds dx dx dx dx   K  (3.1) 

and define a quantity 

 1 2 3

4 14 24 34 |4

1
U A A A    K

K
. (3.2) 

Furthermore, we introduce a constant 
0R  for later use and define 

 
0R KR . (3.3) 

Thus, the quantity U reads as 

 
m |4

1
U 0,0,0,

 
  
 

R
R

. (3.4) 

In contrast to Melia’s claim, the metric (2.2) and equally the metric (3.1) are not metrics of 
a flat space, because the Riemann does not vanish nor does the Ricci. 

Using tetrad indices m 1,2,...,4 , the Ricci has the form 

 
s s r s s

mn mn |s n|m rm sn mn s n snR A A A A A A , A A     . (3.5) 

One easily derives 

 
s s s s

mn |s s mn |s s m nR U 3U U 'g 3 U U U u u           . (3.6) 

Here,  mn'g 1,1,1,0  is the 3-dimensional tetrad metrical tensor and  mu 0,0,0,1  the 

timelike unit vector. Evaluating the Ricci scalar and Einstein tensor, we have 

 

s s

11 22 33 |s s

s

44 s 0

G G G 2U 3U U p

G 3U U

     

  
. (3.7) 

We note that with these equations the possibilities of determining the quantity U are 
exhausted, because the line element describes the curvature of space, but cannot 
describe the change of curvature. The latter can be evaluated with the Bianchi identities. In 

their contracted version, they lead to the conservation law 
m

n||mT 0 . Investigating this 

relation we get more information about the structure of the model 

  | 0|4 0 4p 0, 3 p U , 1,2,3

         (3.8) 
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The pressure of the cosmic fluid is spatially constant. To proceed, we refer to Eq. (3.4) and 
obtain 

 4 4

|4 4 |44

1 1 1
U U U    R R K

R R K
. (3.9)  

Following Melia we put 

 0K , (3.10) 

i.e., the expansion of the universe does not accelerate. Melia has evidently accumulated 
an immense amount of astrophysical data acquired from observatories and has 
meticulously analyzed this data and provided diagrams in a series of papers. Recently, he 
and his coworkers reexamined [3] the data of the SDSS-IV Quasar Catalog with the 
Alcock-Paczyński effect. They modestly mentioned that the Rh=ct model is favored for 
explaining these data. Indeed, this is a strong argument for the prerequisite (3.10) for a 
cosmological model. We want to draw the reader’s attention to a paper by Krasiński [4] 
(“Cosmological models and misunderstanding about them.”). He wrote: “The accelerating 
expansion of the Universe is not an observed phenomenon, but an element of 
interpretation of observations, forced upon us by the R-W models“. 

Accepting (3.10), Eq. (3.9) is reduced to 

 
s s

|s sU U U 0  , (3.11) 

the Friedman equation in tensor form. It has the solution 

 4

i
U , 1  R

R
. (3.12) 

This simplifies Einstein's field equations  (3.7) considerably; 

 11 22 33 44 02 2 2 2

1 3 1 3
G G G , G , p ,          

R R R R
. (3.13) 

Thus, the EOS 

 
0 3p 0    (3.14) 

is the consequence of the field equations, describing a universe with non-accelerating 
expansion. Inserting this result into the conservation law (3.8) one finds consistence. 

Cosmologists also try to present their models in non-comoving coordinates. 
Therefore, one has to set up a coordinate transformation to obtain a line element in non-
comoving coordinates. Melia [5] made an attempt to derive such a line element, but he 
ended up with an equation containing non-comoving variables, but still containing the 
comoving time coordinate. A transformation matrix would be necessary to obtain from the 
Christoffel symbols (2.4) the corresponding Christoffel symbols in the non-comoving 
system. We doubt whether such a transformation exists. 

Although a non-comoving observer can hardly be realized in Nature, a 
representation in a non-comoving system could give some insights into the structure of the 
model. It is possible to transform the tetrads (2.5) into a non-comoving system with a 
Lorentz transformation operating on the tetrad indices of (2.5) and maintaining the 
coordinate indices. With these 4-beine one can derive the Ricci-rotation coefficients for the 
non-comoving system. But it is more comfortable to use the inhomogeneous 
transformation law of the Ricci-rotation coefficients 

 
s m'n's s' s s'

mn m n s' m'n' s' n|mA L 'A L L  . (3.15) 
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Here, the quantities L  denote the Lorentz transformation. From now on we prime the 
kernels and indices for quantities of the comoving system. The Hubble law provides the 
relative velocity and the Lorentz factor of the reference systems: 

 
1 1

v Hr r r  K R
K R

. (3.16) 

Applying (3.12), one has the simple relations 

 
2

2

r 1
v ,

r
1

  


R

R

. (3.17) 

 We note that in a flat infinite universe, the recession velocity v  of the galaxies can 
exceed the velocity of light, and a Lorentz transformation has to be restricted to the region 

Hr r  , the region inside the cosmic horizon bounded by 
Hr  . This is a hindrance in all open 

models. Applying (3.15) to the quantity U, we obtain an expression containing forces 
difficult to explain in the flat space scenario. We treat this problem in the following section. 
We emphasize that despite a change of notation and the introduction of new quantities, we 
still treat the Melia model. 

 

4. SUBLUMINAL MODEL VS RH=ct MODEL 

In this section we compare Melia’s Rh=ct model with our Subluminal Model. First, 
we continue with the problem of transforming the Ricci-rotation coefficients from a 
comoving reference system into a non-comoving reference system. We have already done 
this in our paper [2]: 

  3 2 m'

m 4 1 m m m'

1
U v ,0,0,0 i v 'U ,0,0, i 'U , 'U L U

 
       
 R

 . (4.1) 

In the context of our positively curved Subluminal Model, we can explain this expression. 

Switching off the expansion (
m'U 0 ), one is left with 

 
m

1
U v ,0,0,0

 
  
 R

. (4.2) 

This is a geometrical quantity and is just the force 4

41 1A U  one can derive from the dS 

metric, the seed metric of our Subluminal Model 

  2 2 2 2 2 2 2 2 2 2

2 2

1
ds dr r d r sin d 1 r dt

1 r
       


R

R
. (4.3) 

The second brackets in (4.1) are the contributions of the expansion. 

The dS metric can also be written in the form 

 2 2 2 2 2 2 2 2 2 2 2 2 2ds d sin d sin sin d cos di           R R R R , (4.4) 

representing the metric of a pseudo-hypersphere with constant radius R .  is the polar 

angle and 
2 2a 1 cos 1 r      R  the lapse function. Respecting these results, one is 

able to interpret the quantities introduced with (3.3). R  is the time dependent radius of the 

pseudo-hypersphere envisaged in the non-comoving system, and 
0R  the very radius 
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measured in the comoving system with expanding rods. In (3.13) we find expressions for 
pressure and mass density that have become familiar from other cosmological models. 

From the relations r sin R , we find that the maximal value of r  is 
Hr = R , the 

equator of the pseudo-hypersphere relative to an observer who defines his position as 
pole. Thus, the cosmic horizon is a geometric property of the Subluminal Model. 

Arriving at (3.13), the suspicion must arise that the Rh=ct model is based on a 
pseudo-hypersphere and is not globally flat but only locally flat. This is substantiated by 
the occurrence of geometrically interpretable quantities in a non-comoving system. 
Basically, the following considerations apply: 

If forces arise in a cosmological model, forces that originate from or 
act on masses, then the space has to be curved according to the 
general theory of relativity. 

If this principle is disregarded by cosmology, it occupies a position that lies outside 
the large world of the rest of physics. Cosmology only then would tolerate violations of the 
rules of special relativity and allow acausalities. 

We constructed the Subluminal Model based on the dS metric as seed metric, 
having the form parameter k 1 . Then we dropped the condition const.R  and we found 

a metric in comoving coordinates with k 0 , describing a cosmos expanding linearly in 
free fall. In contrast, examining Melia’s model, one has to go in the transverse direction. 
We rewrite the metric (2.3) with 

 1 2 3dx dr ', dx r 'd , dx r 'sin d       

and retrieve Melia’s original k 0  metric 

  2 2 2 2 2 2 2 2 2ds dr' r' d r' sin d dt '      K .  

Then one has to transform the field strengths derived from this metric into a non-comoving 
system, review the methods and then find the dS metric as seed metric. 

If we claim that the comoving coordinates  r', , ,t '   in the line element above do 

not parametrize a flat space but are coordinates on a pseudo-hypersphere, both Melia’s 
model and the Subluminal Model are geometrically identical in the end, but are presented 
in different ways. We contrast the two models in Table 1. This table gives an overview of 
the properties of the two models. On can find more details on this subject in our papers [8-
11]. We emphasize that the differences between the two models are balanced, if one 
assumes that the form parameter of Melia’s model can be interpreted for a model being 
positively curved and in free fall. 
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Table 1. 

 

5. CONCLUSIONS 

We analyzed Melia’s Rh=ct model using a coordinate invariant notation. We showed 
that if we use this notation, the Rh=ct model and the Subluminal Model come closer and 
some contradictions can be removed. To avoid violation of the special theory of relativity, 
one has to reinterpret the Rh=ct model as a locally flat model expanding in free fall. 
Moreover, this reformulation reveals that conclusions which are drawn from some 
mathematical constructions have no physical meaning. The two models discussed are 
both exact solutions to Einstein's field equations, which complement each other and 
describe Nature better than the FRW models. 

 

 Rh = ct Model Subluminal Model 

i. globally flat locally flat 

ii. recession velocity defined by the 
Hubble law 

recession velocity geometrically defined 

iii. r is not bounded r is bounded 

iv. superluminal recession velocities are 
possible  

only subluminal velocities occur 

v. galactic islands are forming galactic islands are not possible 

vi. the cosmic horizon is artificially 
implemented 

the cosmic horizon is a geometric property 
of the model 

vii. the range of the Lorentz trans-
formation has to be restricted 

no restriction on the Lorentz transformation 

viii. the laws of special relativity are 
violated 

the laws of special relativity are basic 
ingredients of the Subluminal Model  

lx. the space is infinite the space is finite 

x. the content of mass is infinite  the content of mass is finite 
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PEDAGOGICAL APPENDIX 

Ricci-rotation coefficients vs Christoffel symbols 

 

The Christoffel symbols are defined as 

  l i j

ik kj|i ji| k ik|j

1
g g g g

2
    , (A) 

the indices i,k,... being coordinate indices. The Ricci-rotation coefficients have the form 

and symmetry property 

 
s t ts j sr j sr j

mn j nt j mt j m(ns)
[n|m] [m| r ] [r|n]

A e e g g e e g g e e , A 0    . (B) 

The two objects (A) and (B) are related by the inhomogeneous transformation 

 
s ss k i j j

nm j ki j m|nn m
A e e e e e   . (C) 

m,n,... are triad or tetrad indices. Evidently, the inhomogeneous term in Eq. (C) is highly 

coordinate dependent. Either the Christoffel symbols or the Ricci-rotation coefficients can 
represent physical quantities. We show with some examples that the Ricci-rotation 
coefficients are favored. 

 

Case 1: Spherical coordinates 

 

The line element in a 3-dimensional flat space in spherical coordinates reads as 

 2 2 2 2 2 2 2ds dr r d r sin d      .  

The metrical coefficients are 

 
2 2 2 rr

rr 2 2 2

1 1
g 1, g r , g r sin , g 1, g , g

r r sin

 

 
      


.  

From these quantities we derive the Christoffel symbols 

 

r r 2

r r

1 1
, r, , r sin

r r

cot , sin cos

 

   

 

 

          

       

.  

These are six different quantities without any discernible properties related to the 
geometry. In contrast we need to calculate only three quantities from the triads 

 
31 2

1 2 3e 1, e r, e r sin      

to obtain the Ricci-rotation coefficients 



 10 

 

22 1 2

21 22 2
2|1

33 1 3

31 33 3
3|1

33 2 3

32 33 3
3|2

1
A A e e

r

1 1
A A e e sin

r r sin

1 1
A A e e cot cos

r r sin

    

      


       


.  

Evidently, the Ricci-rotation coefficients describe the curvatures of the great circles 

and parallels of a 2-sphere. The associated curvature radii are r, r sin . This shows that 

the Ricci-rotation coefficients are related to geometrical quantities. Moreover, they simplify 

the calculations because the positions of lower and upper indices are arbitrary: m

m  . 

Maintaining the original Minkowski notation, the timelike quantities do not change the sign 
by dragging indices. 

The relation to the Christoffel symbols one obtains with Eq. (C). Labeling the 
spherical coordinates with 1 r, 2 , 3     one obtains 

     

122 1 2 22 2 1 1

21 2 21 22 1 22
2 1 2 2

3 13 1 3 33 3 1 1

31 3 31 33 1 33
3 1 3 3

3 23 2 3 33 3 2 2

32 3 32 33 2 33
3 2 3 3

1 1
A e e e , A e e e

r r

1 1 1 1
A e e e sin , A e e e sin

r r sin r r sin

1 1 1 1
A e e e cot cos , A e e e cot cos

r r sin r r sin

      

           
 

             
 

,  

i.e., components which can be measured with rods in space. 

 

Case 2: Schwarzschild exterior solution 

 

The Schwarzschild exterior metric can be fully formulated with the curvatures of 
curves on a surface. The line element reads as 

 2 i k

i kds d d , i k      ,  

with the following radii of curvature and angles 

 

3

1 2 3 4

1 2 3 4

2r
, r, r sin , cos

M

, , , i

            

           

.  

Written in full, the line element has the form 

 2 2 2 2 2 2 2 2 2 2 2ds d r d r sin d cos di          .  

Differentiating the curvature radius   of the Schwarzschild parabola, one obtains 

the relation between the coordinate r  and the angle   (with orientation cw), and lastly the 

curvatures quantities 

2 3 3 4

21 31 32 41

1 1 1 1
A cos , A sin cos , A cos , A sin

r r sin r sin cos
        

   
.  

The first three quantities describe the curvatures on Flamm’s paraboloid, the last the force 
of gravity based on (open) pseudo circles with radii cos  , foliating the Schwarzschild 
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surface embedded in a 5-dimensional flat space. Using these quantities the Ricci can be 

split into subequations of type 
2

1 1
0

r r r


 


. 

It is left to the reader to translate the Christoffel symbols 

 

     

 

r r t

t t r r t r3

r

r r

r 2

M M M
, ,

r r 2M r r 2M r r 2M

1 1
, , r 2M

r r

cos
r 2M sin , sin cos ,

sin

 

  

 

  

      
  

       


           



  

into the above Ricci-rotation coefficients by applying Eq. (C). 

 

Case 3: Kerr family 

 

The Kerr geometry describing the exterior field of a rotating source is based on the 
seed metric 

 
2 2 2 2 2 2 2 2

S E E Cds d d d di


         .  

Here, 
S  are the curvature radii of the radial lines of the Kerr surface. This surface is 

similar to Flamm's paraboloid, but elliptically squashed. 
E  are the curvature radii of the 

ellipses, 
H  the curvature radii of the hyperbolae – the orthogonal trajectories of the 

ellipses – , and 
S cos


     the curvature radii of (open) pseudo circles foliating the Kerr 

surface. 

In some papers the Christoffel symbols are listed, filling pages. We are not prepared 
to perform calculations that neither seem useful nor mention the Christoffel symbols. 
Implementing the rotational effects of the Kerr metric, one gets a set of equations. In 
abridged notation this is 

 

   

2 2

2 2

div 2 , rot 0

div 0, rot

2 0, div 2 0
t

  

  


   



F F H F

H H F 2H

F H F H

.  

Here, F  is the centrifugal force and H  the Coriolis force. The structure of these equations 
is called gravitoelectromagnetism by some authors. We note that one is not able to set up 
these equations using the Christoffel symbols. Details can be found in [12][13]. One can 
derive similar structures for the NUT metric and the Kerr-Newman metric. 
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