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1. INTRODUCTION 

 

In cosmology, there are several competing models. Those that allow for the 
expansion of the universe are closer to Nature. Besides the static pressure-free Einstein 
cosmos, the static de Sitter (dS) cosmos deserves consideration. The latter describes a 
closed curved space in which forces act to drive particles apart in all directions. The dS 
cosmos can be geometrically interpreted as a pseudo-hypersphere with constant 
curvature, embedded in a 5-dimensional flat space. The fronts of the diverging particles 
form an expanding 3-sphere. 
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The dS model can be the starting point for an expanding model if the condition 
const.R  is dropped, i.e., the radius R  of the pseudo-hypersphere is assumed to be 

time-dependent. Then neighboring points will move away from each other. Receding 
points are located on a 3-sphere, that is, in the space in which we live. This is the basic 
design of our Subluminal Model. 

However, the motions in the dS cosmos and the Subluminal Model are 
fundamentally different. In the first case, the points move in a static space, in the second 
case they are at rest, but the space expands, taking the points with it and increasing their 
distances. The motion follows Hubble's law v Hr , which allows superluminal velocity for 
large distances of r. This is accepted for some models, where it is assumed that the 
expansion-induced motion is not a physically relevant motion. We do not want to get 
involved in considering that interpretation. 

We demand that the principle of relativity be adhered to everywhere and at all 
times. Our Subluminal Model does not allow for superluminal velocities. The name of the 
model indicates this fact. The recession velocity of galaxies is the greatest at the equator 
of the pseudo-hypersphere, relative to an observer who defines his position as the pole of 
the pseudo-hypersphere. The equator is the cosmic horizon. 

Models with unbounded r must be open, i.e., flat or negatively curved. They are 
infinite, and an infinite amount of matter was created in the Big Bang. Melia [1] has 
proposed a model, which he called the Rh=ct model. He assumed that this model was flat 
and infinite. In the next section, we will compare Melia's model to our Subluminal Model. 

 

2. MELIA'S MODEL VS. SUBLUMINAL MODEL 

Over the past decades, numerous expanding world models have been published, 
under the name FRW models. Most researchers assume an approach to the metric in 
comoving coordinates, with spherical coordinates being preferred. 

For an expanding universe, the canonical form of the metric can be written as 

  
2

2 2 2 2 4 4

442

2

1
ds dr r d g dx , dx i c dt

r
1 k

    


R

. (2.1) 

Here, k is called the curvature parameter, with the values of  k 1,0, 1  , possibly 

indicating either a positively curved, flat, or negatively curved universe.   contains 
spherical or hyperbolic angular functions, and R  is a time-dependent variable. A special 

case is 

  2 2 2 2 2 2 2 2 2ds dt - dr r d r sin d     K , (2.2) 

K being the time-dependent scale factor, r  and t  coordinates, comoving with the 

expansion. In this case, the curvature parameter is k 0 , and the universe is assumed to 

be flat and infinite. In several papers [2-4], we outlined that k 0  indicates a universe 
expanding in free fall. Thus, the metric (2.2) describes a locally flat but not a globally flat 
universe. 

This view is justified since Lemaître [5] showed that the metric of a positively curved 
space with k 1  can be transformed into a metric with k 0 , describing a system being in 
free fall. According to Einstein's elevator principle, space appears locally flat to a comoving 
observer. 
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Melia also uses the notation in Cartesian coordinates 

  
2 2 22 2 2 1 2 3ds dt - dx dx dx  K   (2.3) 

instead of (2.2), apparently to emphasize the flatness and infinity of space. For the scale 

factor K  he sets   0t t tK , where 
0t  is the time that has passed since the Big Bang. 

The lapse function of Melia's metric is 
00g 1 . Thus, no accelerations can be 

derived from the time-like metrical function. t is the global time, valid for all observers, as 
well as the proper time for these observers. The immediate consequence is that the 
universe expands in free fall, but the expansion is acceleration-free. Melia [7] evaluated 
the astrophysical data from the PLANCK project and showed that they fit his predictions 
very well. However, the values differ significantly from those predicted by several FRW 
models. 

Melia's model and our Subluminal Model are based on the same metric (2.2). Both 
are exact solutions of Einstein's field equations, exclude an acceleration of the expansion, 
and lead to the same EOS. The question is whether these models are not only similar, but 
identical. Our Subluminal Model is an extension of the dS model and builds on an 
expanding pseudo-hypersphere. Thus, the model is positively curved and closed. In 
Hubble's law, v Hr , the distance r is bounded. Its highest value is r  R , the value at the 

equator of pseudo-hypersphere, where (t)R R  is the time-dependent radius of the 

pseudo-hypersphere. Thus, the model excludes superluminal velocities and their 
associated unphysical effects. We prefer the notation 

  2 2 2 2 2 2 2 2 2ds dr r d r sin d dt      K . (2.4) 

The Friedman equations are 

 1, 0 R R . (2.5) 

Therefore, the expansion is linear. The EOS is 

 
0 3p 0   . (2.6) 

To approach the question of how similar the two models are, we rely on a paper by Melia 
[8], in which he described the field quantities of his model. He represented the field 
quantities in Riemannian form, i.e., with Christoffel symbols. However, he did not provide 
the field equations. The calculations are a bit tedious, but are nevertheless provided in 
Appendix B. It turns out that the spatial components of the Riemann and the Ricci do not 
vanish, and so the space is globally curved. 

The Christoffel symbols are coordinate objects and are only indirectly related to 
geometric and physical objects. Therefore, we extend them to the Ricci-rotation 
coefficients, which are composed of the curvature quantities of the surface that represents 
the model. 

First, we read from (2.3) the 4-bein vectors 

 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

e , e , e , e 1

1 1 1
e , e , e , e 1

   

   

K K K

K K K

 (2.7) 

and calculate the Ricci-rotation coefficients using Melia's Christoffel symbols  : 

 
ss is i k j

mn j ik i
m n|mn

A e e e e e   , (2.8) 
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where m, n,... are tetrad indices, and i, k,... are coordinate indices. The tetrads represent 
rods and clocks that measure the structure of space. We use the original Minkowski 

notation  4x i c t . This has the advantage that m

mn mn mg ,    . 

As an alternative to (2.8), one can calculate the Ricci-rotation coefficients directly 
from (2.7). 

 
1 11

14 1 |4
1|4

1
A e e i    

K
K

K K
. (2.9) 

Here, the overdot indicates the derivative with respect to global time. Introducing 
0R =KR  

with 
0R  as a constant, we get with (2.5) 

 1

14 11

i
A D  

R
. (2.10) 

Finally, we have 

 11 22 33 mn mn

i i
D D D , D 'g     

R R
  (2.11) 

The 
mnD  are the 2nd fundamental forms of the expanding 3-surface which we intend to 

discuss, and 
mn'g  is the 3-dimensional spatial metric1. 

Integrating the first equation of (2.5), we get 

  c tR . (2.12) 

Rescaling 
0t t t , we get Melia's scale factor. Looking at our Subluminal Model, then R  

is the radius of our universe. If  is the polar angle on the pseudo-hypersphere and 

R sin R  the radial coordinate, we have at the equator  hR c t R . This is Melia's 

basic equation. 

To proceed with our derivation of field equations, we use the general formulae of the 
2nd fundamental forms provided in Mathematical Appendix A. Melia investigates the metric 
(2.3), using Cartesian coordinates. In this case, the quantity 'A vanishes and the relation 
(A.2) is reduced to 

 
s s s

mn m n mnA D u D u  .  (2.13) 

(A.4) shows that the 3-dimensional part of the Riemann does not vanish and that 
the geometry is positively curved. We have  

 R D D D D , 1,2,3
    

    . (2.14) 

These are Gauss' equations for embeddings of class one, i.e., for embedding a surface Mn 
in a space Mn+1. 

The relation (A. 4) of Appendix A also contains the Codazzi equations 

 [ ]D 0

 
   (2.15) 

                                            
1
 The reader who is not familiar with Minkowski notation will notice that the factor i drops out of all field 

equations. 
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which are trivially satisfied because R is a spatial constant. Note also that with Melia's 

notation, the spatial covariant derivatives reduce to the ordinary partial derivatives: 

m n m|n
  . 

Of the Ricci only remains: 

 

|4

44 |4

|4

R D D D

R D D D

R 2D D D D D



   

 

 

   

   

  

  

   

. (2.16) 

With (2.11), we obtain 

 
442 2

44 02 2

2 6
R g , R 0, R

1 3
G g pg , G

 

  

  

       

R R

R R

. (2.17) 

Finally, 

 0 02 2

1 3
p , , 3p 0       

R R
. (2.18) 

The first two relations are missing in Melia's papers. 

In our paper 'Subluminal Model', we started with the metric of form (2.2). In this 
scenario the quantity 'A does not vanish. Since the space is locally flat, all subequations of 
Einstein's field equations with 'A drop out and we get the same result as in (2.17). 

In the end, let us take another look at the equation (A.4) in Appendix A. It contains 
the relation 

 4 s s

4mn [m n 4] [4 m] sn m n|4 m nsR 2D 2D u D D D D
 

        

which is zero for the Subluminal Model and does not contribute to the Riemann. In 
contrast, for a static universe, we have const.R  and the first term in the above equation 

vanishes. Thus, an additional term appears in the Ricci: 

 4

4 2 2 2

2 1 3
R R R g g g

     
    

R R R
.  

Further, we have 

 s rs rs

44 s |4 rs rs 2

3
R D D D D D     

R
.  

For the Ricci scalar, we get the following: 

 4

4 2

12
R R R


  

R
,  

and finally, we calculate the Einstein tensor 

 44 02 2

3 3
G g pg , G

  
       
R R

.  

With the condition const.R , we obtain the dS model from the Subluminal Model. The dS 

model is represented by a pseudo-hypersphere with a constant radius. We obtain the 
typical equations 
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 o 02 2

3 3
p , , p 0       

R R
,  

well-known from this model. This is less surprising because we derived our Subluminal 
Model from the dS model by dropping the condition const.R . 

 

3. CONCLUSIONS 

We analyzed Melia's Rh=ct model using the methodology of the 2nd fundamental 
forms. We did this in the most general form, i.e., in terms of both the invariant tetrad 
formalism, and in Melia's coordinates. We calculated the field equations of the model using 
the results, Melia presented in his papers. We showed that this model actually describes 
an expanding 3-sphere. Finally, Melia's model and our Subluminal Model are on an equal 
footing. Contrary to Melia's claim, his model is spatially locally flat but globally curved. This 
issue can be verified by referring to his recently published results. 

 

4. MATHEMATICAL APPENDIX A 

This appendix presents the mathematical structure of expanding models using the 
2nd fundamental forms of surface theory. We assume that the models discussed, contain 
expanding 3-spheres, whose rigging vectors 

  mu 0,0,0,1   

are time-like and perpendicular to the 3-sphere, i.e., perpendicular to its tangents. We 
define a symmetric spatial quantity as follows: 

 n

mn m||n [mn] mnD u , D 0, D u 0   . (A.1) 

Obviously, this quantity is part of the Ricci-rotation coefficients A: 

 s 4

m||n m|n nm s nm mnu u A u A D     .  

By separating this quantity from the Ricci-rotation coefficients, we obtain 

 s s s s s s

mn mn mn mn m n mn m(ns)A 'A D , D D u D u , D 0     . (A.2) 

Here, the 'A  are some spatial components of the Ricci-rotation coefficients. 

Performing this decomposition in the Riemann 

 
s s t s t s

rmn [m n | r ] [m n r]t [m r] tnR 2 A A A A A
   

     , (A.3) 

we obtain 

 

s s s t t s

rmn rmn [r m]n |t m] tn

s s t s s t s

n [m r ] [m n r ] n [r m] t [m r ] tn [m r ]n

R 'R 2u 'A u D 'A

2 u D D u u u D D u u D D 2D D
  

    

      

. (A.4) 

The quantity s

rmn'R  is written with 'A analogous to (A.3). Here, the derivative with respect 

to 'A is defined by 

 
s

m n m|n nm s m n'A , u 0
 

     .  

By contracting the Riemann, we get the Ricci tensor 
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s t t s s s s rs

m n mn m sn |t s tn n [m s] mn s mn s m n rsR 'R u 'A u D 'A 2u D D u D D u u D D
 

         . (A.5) 

By once again contracting, we obtain the Ricci scalar 

 n s rs n s

n s rs n sR 'R 2D u D D D D


    . (A.6) 

When applied to the models discussed, these formulae are drastically simplified. More on 
this topic can be found in [9,10,11]. 

 

5. MATHEMATICAL APPENDIX B 

In this appendix, we make up for Melia's missing calculations. We keep his field 
quantities in coordinate notation. In order not to stumble over the factor c during the 
calculation, we use the natural measure system with c 1 . The contents of Melia's field 
quantities are not changed by this restriction. 

Melia's field quantities with 0x t  are: 

 0 0 0 1 2 3

11 22 33 01 02 032

0

t 1
,

t t
            . (B.1) 

Written in compact form: 

 0

02

0

t 1
, , 1,2,3

t t

 

   
        . (B.2) 

The Riemann is: 

 
l l g l

j ki i [k|j ] i [k j ]gR 2 , i 1,2,...,4         

and its spatial components 

 
0 0 0 0

| | 0 0 0 0R       

            
            .  

Inserting (B.2), we obtain the Gauss equation 

 
2

1
R

t

  

    
        . (B.3) 

Since the spatial components of the Riemann do not vanish, the geometry is globally 
curved. The mixed components are: 

 
0 0 0 g 0 g 0

0ki i k|0 i 0 |k i k 0g i 0 kgR 0        .  

Thus, we obtain the contraction of the Riemann 

 
0

ki ki 0ki kiR R R R 

 
   .  

Moreover, we have 

 
g g

00 00 00| 0 |0 00 g 0 0g 0R R 0, R 0    

     
          . (B.4) 

Now, by contraction of (B.3), we are able to calculate the Ricci as follows: 

 
2 2

0 0

1 2
R 3

t t
   

        .  
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This is a coordinate object. We need to measure its components with rods. Now,   and   

are triad indices. We strangle the coordinate indices2 using 

 
1 2 3 0

1 2 3

t
e e e , R e e R

t

 

 
 

      

and finally obtain 

 00 02 2 2 2

2 6 1 3
R , R , G p , G

t t t t
    
              (B.5) 

Thus, pressure and mass density 

 02 2

1 3
p ,

t t
       

are geometrically defined quantities, and the EOS is 

 
0 3p 0   .  

Substituting (2.12) into these relations, gives the results (2.18) of the Subluminal Model. 
The geometry of this model is based on a pseudo-hypersphere, and the universe is 
positively curved. 
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