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Abstract: In previous papers we have shown that an observer falling in from an arbitrary 
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1. INTRODUCTION 

 

Misner, Thorne, and Wheeler (MTW) [1] have extensively discussed the problem of 
free fall in their textbook ‘Gravitation’. Their proposed solution has entered into some more 
textbooks and into more than a hundred publications. The derivation of the free fall from an 
arbitrary position takes several pages of a few sub-sections of the textbook. 

In previous papers [2 - 5] we have discussed the rise and fall time of an observer in 
the Schwarzschild field by using standard Schwarzschild co-ordinates, Einstein-Rosen co-
ordinates, and isotropic co-ordinates and also the angle of ascent of the Schwarzschild 
parabola and the rapidity of the motion as parameters. It has turned out that any observer 
infalling from the infinite or from an arbitrary position can only reach the event horizon in 
infinite proper time. Since this result contradicts the widespread opinion of the physicist 
community, we will thoroughly compare the derivation of MTW with our access to the 
problem. 

 

2. DERIVATION BY MTW 

 

First, we will repeat the derivation of the proper time of a freely falling object from an 
arbitrary position as done by MTW, but we will simplify it considerably. Thus, we will get 
more insight, but we will find inconsistencies. 

In addition to the proper time   the variables      with   as the rest mass, the 

energy E at infinity, and the local energy 
localE   are used by MTW. Furthermore, the vectors 

are represented in the co-ordinate notation and as 1-forms as well. If a quantity is 
formulated with the help of a reference system, the indices are suppressed. Likewise the t-

notation ( 0x t ) is used instead of the more convenient it-notation ( 4x it ). The t-notation 

requires a careful treatment of the time-like components of 4-vectors. 

In MTW p 663 we find the relation 

 0 2

2M
r

1 E



 (2.1) 

which they have educed after lengthy deliberations. Therein 
0r  is the position where the 

observer has zero velocity (apastron), E E/m  the energy per rest mass and E is the 
energy at infinity. Since we want to free ourselves from terms like 'energy at infinity', we 
have to rewrite Eq. (2.1) in such a way that it contains basic variables which are directly 
related to the free fall. 

Since 
0r  is the very position from which the observer (we will call him B') is released 

for the free fall, he has at this location the initial velocity v' 0 . A second observer (we will 

call him B''), who is in free fall coming from infinity has, at the moment he passes this 
position, the speed 
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 0

0

2M
v

r
  . (2.2) 

By rearranging the equation (2.1) one gains 
 

 2 2

0 2

0

1
E 1 v  


.  

Thus, one has 

 
0

1
E 


  (2.3) 

wherein 
0  is the Lorentz factor for the velocity of the observer B" who comes from infinity 

and is just passing the position 
0r . 

MTW start with their considerations from the equation (p 656) 

 2g p p m 0 


   , (2.4) 

wherein p  is the 4-momentum. Going on with the tetrad representation and with the it-

notation, and by dividing by 2m  and by multiplying by the proper time, we arrive at a 
relation that can be derived from the invariance of the line element with respect to Lorentz 
transformation. Reduced to two dimensions, this is 

 2 2 2 2 2ds dx ' dT' dx dT     , (2.5) 

wherein dx '  and dT '  are the physical radial and time-like arc elements of the metric in 

terms of an observer B' who is infalling from 
0r . dx  and dT  refer to the static observer in 

the Schwarzschild field (we will call him B). For this observer the relations 

 
1 1

dx dr, dT dt,  
2M

1
r

    




  

are to be applied, where the metric coefficient  is identical with the Lorentz factor of an 

observer B" incoming from the infinite. 

In a reference system that is linked to an observer B' falling down from 
0r , one has 

 x ' const., dx ' 0  . (2.6) 

If one utilizes these definitions one obtains from (2.5) 

 2 2 2dT' dx dT   , (2.7) 

which corresponds to the MTW relation (2.4), if one undoes all the changes in notation. 
Clearly, (2.7) is more insightful than (2.4).  We write (2.7) in the form 

 
2

2 2

2

dT
dx 1 dT'

dT '

 
  
 

. (2.8) 

From now on we perform the calculations in such a way that we get the result of MTW. We 
repeatedly use the formulae of the table beneath. 
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I. x'' const.  

systems L transformations rel. velocities phys. time rel. vel. of meas. in 

1. B'' || B' L(v0) m'' m'' m'

m'dx L dx
 0

dx '
v

dT '
  

0

dT '

dT ''
   

B'' a. B' B' 

2. B'' || B L(v) m'' m'' m

mdx L dx  dx
v

dT
  

dT

dT ''
   

B'' a. B B 

3. B || B' L(v') m m m'

m'dx L dx  dx ''
0

dT ''
  

0

dT

dT'





 
  

II. x' const.  

systems L transformations rel. velocities phys. time rel. vel. of meas. in 

1. B' || B L(v') m' m' m

mdx L dx  dx
v '

dT
  dT

'
dT '

   
B' a. B B 

2. B' || B'' L(v0) m' m' m''

m''dx L dx  
0

dx ''
v

dT ''
   

0

dT ''

dT '
   

B' a. B'' B'' 

3. B'' || B L(v) m'' m'' m

mdx L dx  dx '
0

dT '
  0dT ''

dT '





 
  

III. x const.  

systems L transformations rel. velocities phys. time rel. vel. of meas. in 

1. B || B' L(v') m m m'

m'dx L dx  dx '
v '

dT '
   dT '

'
dT

   
B a. B' B' 

2. B || B'' L(v) m m m''

m''dx L dx  dx ''
v

dT ''
   

dT ''

dT
   

B a. B'' B'' 

3. B' || B'' L(v0) m' m' m''

m''dx L dx  dx
0

dT
  

dT ' '

dT ''





 
  

 

In (2.8) we are using 

 0 0
2

0 00

dT 1 2M
, , v

dT' r1 v


    
 

, (2.9) 

and we will reflect the first relation therein later on. Substituting the first relation (2.9) into 
(2.8) one obtains 

 

     

2
2 2 2 2

2 2 2

0 0

2 2 2 2 2 2 2

0 0

1 1
dx 1 dT' dT '

dr 1 v 1 v dT' v v dT'

   
       

     

      
 

.  
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Finally, we have for the proper time of an observer B' who falls down from 
0r  

 
2 2

0

1
dT' dr

v v



. (2.10) 

By using the standard Schwarzschild metric coefficients as in 
1

dT dt


 we get with 

 0 0

2
dT ' dT dt

 
 

 
 (2.11) 

an expression for the co-ordinate time related to the static observer 

 
2

0

2 2 2

0

1 v 1
dt dr

v v 1 v




 
. (2.12) 

For the integral of (2.12) MTW provide a solution with cycloid parameters. Until now 
we have carried out a method, how to get, under simplified conditions, the result of MTW 
and we will be able refer to these statements hereafter. 

MTW do not explicitly provide a formula for the fall velocity of an observer who is 

released from 
0r . But it can be found in the textbook by Raine and Thomas [6] and can 

be derived with 

 
dx

v '
dt

 ,  

where we have taken the above expression from the table for x' const. . With 

1
dx dr, dT dt  


 we finally obtain with the MTW formula (2.10) 

 
2 2

0

2

0

v v
v '

1 v





. (2.13) 

We recognize that this formula contradicts the Einstein addition law of velocities. If 

one represents this function graphically for some values of 
0r , one can see that the 

velocity of freely falling objects v '  reaches the speed of light at the event horizon for all 
0r . 

However, the curves alter the curvatures at certain points. It is not very plausible that 
Nature provides for the free fall preferred points, in which the velocity changes significantly 
its behavior. We illustrate this in Fig. 2.1. 
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Fig. 2.1. Velocity of free fall by MTW 

 

3. CORRECTING THE DERIVATION 

 

Previously, we have noted that we are reserved concerning the use of the first 
equation (2.9). We will now examine this relation in more detail. From the table we see that 
this relation is valid for x'' const. , i.e. for an observer B", who is associated with a system 

that comes from infinity. We want to reconsider this once more in detail. 

We note the Lorentz transformations 

 

1' 4 ' 1' 4 '

1 1 4 4

1'' 4 '' 1'' 4 ''

1' 0 1' 0 0 4 ' 0 0 4 ' 0

1'' 4 '' 1'' 4 ''

1 1 4 4

L ', L i ' v ', L i ' v ', L '

L , L i v , L i v , L

L , L i v, L i v, L

        

        

        

 , (3.1) 

relating the three observers B, B', and B" and we also note the Lorentz formulae 

 0 0
0

0 0

v v v ' v v v '
v ' , v , v

1 v v 1 v 'v 1 v v '

  
  

  
 , (3.2) 

      0 0 0 0 0' 1 vv , ' 1 v 'v , ' 1 v 'v               , (3.3) 

      0 0 0 0 0 0'v ' v v , v ' v ' v , v ' v v '              . (3.4) 

With the help of (3.1) one obtains 

 4' 1 4dx i 'v'dx 'dx    ,  

and with 4' 4dx idT', dx idT   

 
dx

dT' ' 1 v ' dT
dT

 
   

 
.  
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Since the velocity of B" with respect to the static system B is defined by 
dx

v
dT

 , one has 

finally derived 

 
0

dT

dT'





  

with the help of  (3.3), last relation. We still have to show that this applies to x" const. . 

With the Lorentz transformation (3.1) holds for x" const.  the relation 

 1'' 1 4dx dx i vdx 0      .  

This yields the aforementioned expression for the relative velocity 

 
dx

v
dT

 ,  

as stipulated in the table. We have performed quite elementary calculations to show which 
formulae are valid if one associates a reference system with a moving observer. 

We now recognize the problems of the MTW method. The relation (2.7) was derived 
by applying x' const. . Then an expression was used which refers to a relation with 

x" const. . That means that two excluding conditions are used in the same equation. 

If we take from the table the appropriate expression for x' const. , namely 

 
dT

'
dT '

   (3.5) 

we refer to a single reference system, namely to the one which is associated with the 

observer B' who is released from 
0r . Substituting in (2.8) leads after a short calculation to 

 dT' dr
'v '





,  

which can be directly derived from 

 
1dx dr

v ', 'v '
dT dT'


   . (3.6) 

With the Lorentz formula of (3.4) we get 

 
 0 0

1
dT' dr dr

'v ' v v


 
  

. (3.7) 

For the question which of the two approaches is correct, there exists a decisive 
criterion. According to Einstein no gravity acts on objects which are inside a freely falling 
elevator. They have to hover in the elevator, independently of the position from which the 
elevator starts. In a former paper [4] we have shown that this is the case for our approach, 
and therefore the method of MTW has to be dismissed. 
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