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Abstract; We present an abridged version of our article 'Collapsing interior Schwarzschild 
solution' [1]. 

 

Since Oppenheimer and Snyder, inspired by an expanding cosmological model of 
Tolman in 1939, first proposed a model for a collapsing star, many authors have adopted 
this problem. Among the many suggestions are only a few exact solutions of Einstein's 
field equations. The reason is that the Einstein field equations are underdetermining and 
allthough the conservation laws have been consultedthere are not enough equations 
available to determine the metric coefficients and the physical quantities of the matter 
configuration. 

Therefore we do not try to solve the Einstein field equations, but we construct the 
collapsing model with geometric methods. We begin with the static interior Schwarzschild 
solution and extend it to a collapsing model. We rely on the geometric interpretation of the 
interior and exterior Schwarzschild solutions as an embedding into a higher-dimensional 
flat space. The spatial part of the interior solution is a spherical cap which is joined to 
Flamm's paraboloid of the exterior solution in such a way that both surfaces have a 
common cutting tangent. The collapse takes place, if the spherical cap slides down the 
Schwarzschild parabola. The latter remains unchanged according to Birkhoff's theorem 
and essentially determines the course of the collapse. 

A look at Fig. 1 shows that the model can be completely described by the inner 

surface 
i  and the outer surface 

e  of the whole Schwarzschild model. Thus, there is no 

surface 
c  on which a line can be drawn and the elements of which can be attributed to a 

'collapsing line element'. Nor is there any collapsing coordinate system. Since at any time 
of the collapse a snapshot of the collapsing object can be made, which is described by the 

interior Schwarzschild solution, one can access the coordinate system of 
i  at any time. 
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However, we do this only to determine the basic variables of the model. For all other 
investigations we use the tetrad calculus. 

 

Fig. 1. Collapse of the interior 

Both pressure and matter density of the collapsing model have the same analytical 
form as the static solution 
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but vary with time. The stellar object can no longer be interpreted as an incompressible 

fluid sphere. 
gR  is the radius of the spherical cap. By matching the sphere to Flamm's 

paraboloid one obtains 
g g 2 R . 

g  is the radius of curvature of the Schwarzschild 

parabola at the boundary of the interior and exterior geometries. Since it is easy to 

calculate it, one obtains 3

g gr 2MR , wherein 
gr  marks the position of the boundary 

surface in the embedding space and is time-dependent. It is advantageous to define the 
auxiliary variables 

  1 2 3 4 gR
1 2 3 4 T R R

T

a1 1
1, , a 3a a

2 a 2
       P P P P P, P . (2) 

Therein is 2 2

R ga 1 r  R  and g

Ra  its value at the boundary surface. 
Ra  and 

Ta  are the 

metric coefficients of static interior solution 

 2 2 2 2 2 2 2 2 2 2

R T R Rds dr r d r sin d a dt , 1 a          . (3) 

A star described by this metric cannot be arbitrarily small. It has at 
hr 9 4 M   its 

minimum value, the pressure horizon. Having the extension 
hr  the pressure of the star 

would be infinite at its center. Further, if one let oscillate an object through the star, the 
object would reach the velocity of light in the center of the star if its extent has the 
minimum radius. Thus, there is also a velocity horizon which coincides with the pressure 
horizon. Therefore it can be assumed that a collapsing star can only shrink asymptotically 
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to 
hr . Thus, the model has an inner horizon which lies above the event horizon of the 

exterior solution. This will be an important property of our collapsing model. 

We use two reference systems, the one (m) is in rest with respect to the exterior 
field and the other (m') is comoving with the collapse. We note a relation known from the 
static model and supplement it by an analogous for the comoving system: 

 R I
|1 |4 |1' |4 '

a a1 1
r , r 0, r ' , r ' 0

r r r ' r
    . (4) 

The auxiliary variable r '  with the range of values [
g0,...,r ' ] is referred to in the literature as 

comoving radial coordinate. But we do not make use of this interpretation because we do 

not use or cannot use a coordinate system for the collapsing model. 
gr '  is the value of r '  

at the surface of the star. Furthermore, the following relations apply: 
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At the beginning of the collapse is 
g gr r '  and 

g 0R R . We also demand that the two 

velocities 
Rv  and 

Iv  defined in (5) are composed to the collapse velocity according to 

Einstein's addition law of velocities 

 R I
C

R I

v v
v

1 v v





. (6) 

With the relations above we have established the collapsing Schwarzschild model. 

Between the two systems (m) and (m') the Lorentz transformation 

 1 4 1 4

1' C 1' C C 4' C C 4' CL , L i v , L i v , L          (7) 

mediates. With this and the inhomogeneous transformation law 

 s' m n s' s s' s

m'n' m'n's mn s n'|m''A L A L L  . (8) 

one can transform the Ricci-rotation coefficients and thus the field strengths of the model 
from one system to the other. If we decompose the Ricci-rotation coefficients into 

 s s s s

mn mn mn mnA B C U    (9) 

and further by use of the unit vectors 
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      m m mb 0,1,0,0 , c 0,0,1,0 , u 0,0,0,1     (10) 

we lastly decompose into 

 s s s s s s s s s

mn m n m n mn m n m n mn m n mnB b B b b b B , C c C c c c C , U h U h U      .  (11) 

Therein 

 mn

1

0

0

1

h

 
 
 
 
 
 
 

   (12) 

is the submetric of the tetrad metric 
mng diag(1,1,1,1) . Thus, one has only to calculate the 

two lateral field quantities B and C and the acceleration U. With it one gains from the Ricci 

 s s r s r

mn mn |s n|m rm sn mn s n rnR A A A A A A , A A       (13) 

the structure 
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with the graded derivatives [2] 

      
1 2 3

s s s

n||m n|m n||m n|m mn s n||m n|m mn s mn sU U , B B U B , C C U C B C . (15) 

The structure (14) is valid for all systems, for the static interior solution and the two 
systems of the collapsing model. We call the second term in (8) Lorentz term. It can be 
written as 

 s' s' s s' s'

m'n' s n'|m' m' n' m'n''L L L h 'L h 'L   . (16) 

Evaluating it with (11), last equation, the inhomogeneous transformation law of the U-
quantities is reduced to a vector equation 
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g

1 1
'U U 'L , 'U v ,0,0, i v a
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P
R

. (17) 

The primes in front of the kernel indicate that it is a quantity of the collapsing system, the 
primes on the indices that a quantity is measured in the comoving system. We have 
implemented the collapse by considering the field quantities as a function of time and by 
demanding that the primed reference system is connected to the collapse. After recourse 
to the static system we obtain 

  m mR R R R
m' m' m c c c m' m' m c c c

a a a a1
B L B ,0,0, i v , C L C , cot ,0, i v

r r r r r

   
             

   
 (18) 

and thus we have determined all field quantities of the comoving system. 

It is essential for the collapse that the radius 
gR  of the spherical cap is time-

dependent.Therefore the quantity 

 1' 4 ' g|4 '

g

1
0, F F R

R
  (19) 

occurs in our model. From the conservation law one gains 

 
    0|4' 0 4' 4' 4' 0 4'p 'U B C 3 p 'U       

.  

The fourth components of the quantities B, C, and 'U have equal values. This means that a 
volume element contracts equally in all three directions. From (1), second equation, one 

calculates 
0|4' 0 4'2    F  and finally one has the quantity 

     R
4 ' 4 ' C C

a
1 'U i v 1

r
     F P P  (20) 

which determines the course of the collapse. The conservation law is entirely treated with 

    m'n'

||n' |1' 0 1' 0|4' 0 4'T 0, p p 'U , 3 p 'U       . (21) 

If we determine the relations 
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, (22) 

we have completely eveluated the field equations if in addition we take into consideration 
the stress-energy tensor 

  m'n' m'n' 0 m' n'T pg p 'u 'u    . (23) 

To determine the field quantities for the non-comoving system, we use again the 
Lorentz transformation 

 m' m' m' m'

m m m' m m m' m m m' m m m m'B L B , C L C , U L 'U L , L L 'L      . (24) 

The lateral quantities take the static form. However, for the quantity U 

 
2 2 m'

m m R R m m m m' m R R

g

1
U E v , L , E v     F F F P

R
 (25) 

is valid. It can be seen that this expression only goes over into the static one, if one turns 

off the collapse, thus if one puts 
g mconst., ( 0) R F . The U-equation is form-invariant 
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On the other hand we get for the B- and C-equations 
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This allows us to represent the Einstein tensor completely. We only have to prepare the 
right side of the field equations. The stress-energy tensor in the non-comoving system 

    mn mn 0 m n m C C CT pg p 'u 'u , 'u i v ,0,0,          (28) 

we write component by component 

 
 

   

2 2

11 C C 0 22 33

2 2 2

41 C C 0 44 0 C C 0

T p v p , T p, T p,

T i v p , T v p

       

        
. (29) 

The question arises of whether the stress-energy tensor can be geometrized, ie 
whether the quantities of the right side of the field equations can be brought into 
connection with the very different field quantities of the left side. If we calculate the 
quantities in the second brackets of (27) 

    2 2 2

1 1 C C 0 1 4 C C 0
ˆ ˆ2U v p , 2U i v p       F F   (30) 

it is evident that the lateral subequations establish the necessary connection. If one also 
takes into consideration the U-equation, one has geometrized the stress-energy tensor. 

Finally is to be investigated the final state of the star. We refer the collapse velocity 
1

Cv dx dT  to the surface of the star. At this location is 
g g, 0r r , r ' r const.   . With the 

Lorentz relation 
CdT dT'    we get 

  R
C C R I R I

I I 0

dr 1 r
v v v , dT ' dr

dT ' v r r


      

 
.  

In it are 
I , 

Iv , and 
0r  constants. Integration results in a function 
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  0 0 0

I I

1
f(r) r 2 r r 2r ln r r

v
     
 

,  

which is to be regarded in the range [
h 0r ,r ]. Since r is an outgoing coordinate the collapse, 

however, is directed inwards, we shift the origin of the coordinate system to the position of 
the surface, and that at the beginning of the collapse. We let run inwards the new radial 

coordinate 
0 h 0 hr r r, r r r    . Then we have 

    0 0 h 0 0 h 0 h 0g(r) r r 2 r r r r 2 r r ln r r r r          .  

If we choose the constant of integration as  0 0 h 0 hg(r ) 2 r r ln r r   , then the proper time 

at the beginning of the collapse is T' 0 . Finally, one has in the the range under 

consideration 

      0

I I

1
T' r g r g r

v
    

 . (31) 

The function is depicted in Fig. 2. 

 

Fig. 2. Progress oft he collapse 

From the figure one can gather how much time has passed, if the surface of the star has 

moved a certain distance 
0r r . From 

hr r
lim T '(r)


   is apparent that the star needs an 

infinitely long time to reach the minimum radius. Thus, the collapsing interior 
Schwarzschild solution has an inner horizon. It is identical to the above-mentioned 
pressure horizon and the velocity horizon. The star can never shrink to a point. The matter 
density, the pressure, and the curvature of space never are infinite. The inner horizon is 
above the event horizon of the exterior Schwarzschild solution. 
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Conclusions 

The formation of a black hole in this model is not possible. It describes an ECO 
(eternally collapsing object), as it was predicted by Mitra [3] on the basis of astrophysical 
considerations. Since the exterior Schwarzschild solution has been proven and describes 
Nature well, one can assume that the interior solution can describe the interior of a star at 
least in a rough approximation. Although the two parameters, pressure and mass density 
are not sufficient to record the properties of a star, there is still hope that at least some 
basic properties of the model have general validity and that also more pretentious models 
do not exhibit unusual behaviors. 
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