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1. INTRODUCTION 

 

In former papers [1,2] we have shown that the Schwarzschild model can be 
embedded in a flat five-dimensional space by the use of two correlated surfaces, 
generated by the rotation of Schwarzschild’s and Neil’s parabola. This double surface can 
be derived from a single surface by projection techniques. These two surfaces have a 
common Riemann and Ricci tensor. If we cut off all we do not need for the four-
dimensional description we obtain the physical surface. The physical surface is the place 
of all possible observations and measurements. We are not able to experience the extra 
dimensions, but it might be a good mathematical method to use a higher-dimensional 
theory and embedding techniques to describe four-dimensional physics. In this paper we 
make use of this strategy. We analyze the Schwarzschild metric in the standard and 
Kruskal forms and we make four assumptions: 

(i) We interpret the Schwarzschild metric geometrically as the common metric of two 
correlated surfaces embedded in a five-dimensional flat space. 

(ii) Coordinate transformations are arbitrary and a matter of convenience. They do not 
alter the invariant geometrical structure of the theory. 

(iii) We will use vectors as field strengths representing the normal and odd curvatures 
of these surfaces. 

(iv) Any transitions to new states of motion are performed by local Lorentz 
transformations. 

The consequence of these assumptions is that the Schwarzschild model will not 
supply Black Hole physics and the Kruskal metric will not provide interior solutions. 

 

2. THE SCHWARZSCHILD STANDARD METRIC 

 

The Schwarzschild metric can be written as 

 2 i k

i kds d d , i k      (2.1) 

with 
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 . (2.2) 

ρ is the curvature vector and ε the angle of ascent of the Schwarzschild parabola.  

Flamm's paraboloid is generated by rotating the Schwarzschild parabola about the 
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directrix through the angles   and φ . Another piece of the four-dimensional surface is 

generated by an imaginary rotation about the r-axis, i. e., the symmetry axis of the 
Schwarzschild paraboloid. Neil's paraboloid is generated by a similar procedure. From 
(2.1) we obtain 

 2 2 2 2 2 2 2 2 2 2 2ds d r d r sin d cos di          . (2.3) 

ε is taken to be cw and has the range [π/2, 0].  

 
2M

sin
r

    (2.4) 

equals the velocity of a freely falling observer. Differentiating this expression, we get 

 
1 1

d dr dr
cos 1 2M/r

   
 

 . (2.5) 

Replacing ρdψ in (2.3) with the Schwarzschild co-ordinate time dt we obtain the 
Schwarzschild metric in the standard notation. Since the Schwarzschild parabola has the 
vertex at r = 2M (ρ = 4M, ε = π/2) no geometry is defined for r < 2M. The Schwarzschild 
metric has a boundary at r = 2M as a consequence of assumption (i). The Schwarzschild 
metric is regular everywhere on the physical surface, also at r = 2M. From the equation  of 
the Schwarzschild parabola 

 2R 8M(r 2M)   , (2.6) 

R being the co-ordinate of the extra dimension of the flat embedding space, we get instead 
of (2.5) 
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2

1 R
d dR 1 dR

sin 16M
     


 , (2.7) 

which shows that the tangent vector of the physical surface at the boundary of the 
geometry is simply dR and is normal to the symmetry axis of the Schwarzschild parabola. 
The ‘singularity’ at 2M can be removed by a suitable choice of the parameters. This was 
pointed out by Einstein and Rosen [3]. They defined a new variable, which differs from our 

R by the factor 8M . The two solutions of (2.6) are the two sheets of the same space, 

connected by the bridge at R = 0. The second sheet corresponds to the negative branch of 
the Schwarzschild parabola. Since the sign of the ascent of this branch is opposite to the 
sign of the ascent of the upper branch the velocity of a free object would be positive and 
the action of the central mass repulsive. Since antigravitation is not known to occur in 
nature we exclude the second branch from the theory.  The complete Schwarzschild model 
consists of the exterior and interior solution.  The latter has to be matched to the exterior 
solution in such a way that the pressure of the source does not grow infinitely large [4]. 
This could be achieved by adjusting the aperture angle of the cap of sphere which 
represents the space- like part of the physical surface in a convenient manner. The 
complete solution is free from ‘singularities’  and exhibits no peculiarities. It is a good 
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model for approximately describing stellar objects. The interior solution also can be 
embedded in a five-dimensional flat space [2]. It turns out that the energy-momentum 
tensor consists of the generalized second fundamental forms of the embedded surfaces 
and thus the matter can be interpreted as fields. The generalized Codazzi equations of the 
surfaces are the field equations for these matter fields.  

The purist geometrical interpretation of the Schwarzschild metric demands that no 
incoming particle can cross the boundary of the geometry. It is widely accepted that any 
particle incoming from infinity approaches the speed of light at r = 2M. But for particles 
starting from a position different from infinity and falling to the center of gravitation several 
points of view are known from literature. In most of these concepts [5 -20] the radial co-
ordinate r may be interpreted as the path the observers can travel on, although r and t 
interchange their meaning for r < 2M. There was a discussion if particles can cross the 
Schwarzschild radius with a velocity lower than the speed of light by Janis, Cavalleri and 
Spinelli [12], Tereno [21] and  Crawford [22]. Mitra [23-27] showed that the velocity of a 
particle approaches the speed of light at r = 2M independently of the position it was 
released from. This view is supported by the following consideration: A particle in-falling 

from infinity has the velocity 0 0v 2M r   at the radial position r0. Another particle is 

released from this position at the moment the first particle is passing. The difference of the 
velocity of these particles at this moment is v0. Both particles are exposed to the same 

gravitational force  2E M r 1 2M/r    on their travel to the center of gravitation.  The 

difference of the velocities decreases during the motion due to Einstein’s composition law 
of velocities. For particles released from different positions we get as their velocities 

   0

0

0

2M 2M

r r
v r, r

2M 2M
1

r r

 
   

 



 , (2.8) 

where    0 0 0v 2M, r 1, v r , r 0   . Fig. 1 shows some examples. Moreover, Mitra has 

shown in [28] that the Schwarzschild radius for Black Holes is r = 0 and the mass of a 
Black Hole has to be M = 0. 

 

Fig. 1. The velocities 
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3. THE KRUSKAL METRIC 

 

Kruskal [29] has found a co-ordinate system that is regular at r = 2M. The 
Schwarzschild metric in this co-ordinate system can be written as 

  2 22 2 1 4 2 2 2 2 2ds du du r d r sin d        , (3.1) 

 
r3

2 2M
32M

e
r



   . (3.2) 

This co-ordinate system covers four sectors with 

 I    

1

4

u Ycosi

u Y sini

 

 
,  II    

1

4

u Y sin i

u Ycosi

 

  
 ,  III     

1

4

u Ycosi

u Ysini

  

  
  ,  IV    

1

4

u Y sini

u Ycosi

  

 
, (3.3)  

where 

  
r

4M
1 2M/r t

Y r e , Y(2M) 0,
4M2M/r


    . (3.4) 

The imaginary circle 
2 21 4 2u u Y   consists of four branches of hyperbolae of 

constant curvature and two null lines for r = 2M. Plainly planely drawn one obtains the 
Kruskal diagram. Sectors I and III are said to describe the physics of an incoming and 
outgoing rocket and II and IV the interior region of the Schwarzschild metric. As we do not 
believe  that a co-ordinate transformation changes the geometrical content of the theory 
we have to search for another explanation for the Kruskal metric. Evidently, the connexion 
coefficients derived from (2.3) have an invariant geometrical meaning. The 

 

       

s s s s

mn mn mn mn

s s ss s s s s s

mn m n m n mn m n m n mn m n m n

n m m m

A B C E

B b B b b b B , C c C c c c C , E u u E u E u

m 1,0,0,0 , b 0,1,0,0 , c 0,0,1,0 , u 0,0,0,1

  

     

   

, (3.5) 

represent the curvatures of the physical surface: 

 m m m

2 3 3 4

1 1 1 1
B cos ,0,0,0 , C sin cos , cos ,0,0 , E sin ,0,0,0

    
            

       
. (3.6) 

By the use of an extra dimension these expressions can be complemented with 
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 0 11 0 22 0 0 44

1 2 3 4

1 1 1 1
M A , B A sin , C sin sin , E A cos           

   
. (3.7) 

In agreement with assumption (iii) the 
mnA  are the generalized second fundamental forms 

of the physical surface. A co-ordinate transformation does not have an effect  on this 
structure but a Lorentz transformation may be correlated to this co-ordinate transformation. 
By differentiation of (3.3) for sector I we obtain 

 1 4du cosi dY Ysini di , du sini dY Ycosi di          . (3.8) 

Evaluating dY with (3.4) and multiplying with   we get the rotated vectors 

 1' 1 4 4' 1 4dx cosi dx sini dx , dx sini dx cosi dx        , (3.9) 

from which we can read off the components of the Lorentz transformation 

 1' 1' 4' 4'

1 4 1 4L cosi , L sini , L sini , L cosi         . (3.10) 

Thus the velocity of the outgoing Kruskal rocket is 

 Kv th   . (3.11) 

In (3.9) we have used the Schwarzschild standard expressions for the radial line element 
and the local time interval 

 1 41
dx dr, dx cos idt, cos 1 2M/r

cos
     


. (3.12) 

Calculating 1' 4'dx dx  with (3.9) we obtain by using the proper times 4' 4dx id ', dx id     

Einstein’s composition law for velocities 

 
1'

R K

R K

dx v v

d ' 1 v v




 
, (3.13) 

where 1

Rv dx d   is the unspecified velocity of an observer in radial motion. For time 

reversion   we obtain the velocity of an incoming rocket Kv th    and an 

analogous composition law. For sectors II and IV we get an equivalent relation to (3.13) 
with the velocities 

 Kv cth  . (3.14) 

The motion is tachyonic [17]. The rocket is at rest at r = 2M with infinite speed and it 
accelerates to the speed of light in approaching infinity. For time reversion the rocket is at 
rest with the speed of light at infinity. On its way to the center of gravitation it will slow 
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down to infinite speed. Fig. 2 is a diagram for both kinds of velocities (3.11) and (3.14). 

 

 

Fig. 2. Kruskal velocities 

 

All these considerations refer to the tangent space of the exterior solution. Excluding 
the unphysical tachyonic sectors, Eqs. (3.11) and (3.13) show that a Kruskal rocket is not 
able to cross the boundary of the geometry. The velocity of an incoming rocket tends to the 
speed of light in approaching r = 2M. 

 

4. THE KRUSKAL ACCELERATION 

 

In the preceding chapter we have shown that the transition from the standard form of 
the Schwarzschild metric to the Kruskal form can be interpreted as Lorentz transformation 
with non-constant velocity parameter acting in the tangent space of the Schwarzschild 
geometry. This results in an accelerated motion of observers. In the following, we will 
derive forces, which are responsible for this acceleration. Firstly, we remark that the 
curvature properties of the geometry are invariant under the Lorentz transformation (3.10). 
In the new reference system the curvatures (3.6) get time-like components  
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m

2 2

m

3 3 3

m

4 4

1 1
B cos cosi ,0,0, cos sini

1 1 1
C sin cos cosi , cos ,0, sin cos sini

1 1
E sin cosi ,0,0, sin sini

 
     

  

 
        

   

 
     

  

 . (4.1) 

They transform as vectors under (3.10). Since the connexion coefficients are constructed 
with these quantities and also with the tetrads (3.5), the connexion coefficients transform 
as three-rank tensors: 

 
s' sn m s'

n'm' n'm's nmA L A . (4.2) 

The covariant derivative transforms as 

 
s'm n s' s

m'||n' m'n' m ||n m'|n' s m'|n' s' n'm' s'L L L A            . (4.3) 

With the definition 

 
1

s' s' s' s

m'|| n' m'|n' n'm' s' n'm' s m'|n'L , L L L      (4.4) 

and the set of graded derivatives  

 
 

 

1

2

3

4

s'

m'||n' m'|n' n'm' s'

s'

m'||n' m'|n' n'm' s'

s' s'

m'||n' m' |n' n'm' n'm' s'

s' s' s' s'

m'||n' m'|n' n'm' n'm' n'm' s' m'|n' n'm' s'

m m L m 0

b b L b 0

c c L B c 0

u u L B C u u L u 0

  

  

   

      

 (4.5) 

we are able to simplify the calculations considerably. (4.5) shows that the tetrads are 
parallel transported with respect to the graded transport law. The unit vectors of the 1- and 
4-direction of the static system measured by the Kruskal observers have the components 

    n' m'm cosi ,0,0,sini u sini ,0,0,cosi       . (4.6) 

Their own unit vectors are  

    n' m''m 1,0,0,0 , 'u 0,0,0,1   (4.7) 

We calculate the Lorentz term by using (4.6) or  (4.7) 
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s' s's'

m'n' m'n' m' n' m'n' m' n' m' n' m' n' m' n'L h K h K , h 'm 'm 'u 'u m m u u       , (4.8) 

wherein the Kruskal acceleration is 

  n' n'

1 1
K m cosi ,0,0,sini

4Mcos 4Mcos
   

 
 (4.9) 

and measured in the static system 

  n n

1 1
K m 1,0,0,0

4Mcos 4Mcos
 

 
 . (4.10) 

 

Fig. 3. Accelerations 

 

Fig. 4. Effective accelerations 

In Fig. 3 the Kruskal and the gravitational accelerations (3.6) are plotted, in Fig. 4 the 
effective accelerations for an incoming and outgoing rocket taking into account the 
gravitational acceleration.  Evidently we have  

 
4' 4'n'

'||n' 4' ' 4' ' ' ''u 'u A L E K , 1,2,3    
       
 

 (4.11) 

and the Kruskal acceleration seems to be an economical acceleration for rockets. 
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Since the Ricci tensor is invariant under the Lorentz transformation 
m n

m'n' m'n' mnR L R 0   we get with     

 
1 1

s' s' r ' s'

||m'n' m'n' s' n' ||m' r 'm' s'n' m'n' s'R A A A A A A     (4.12) 

the same equations that we derived for the static Schwarzschild system in former papers: 

32 32

44 2 3 4

r ' r ' r ' r '
||r ' || r 'n'm' m' ||n' m' n' m' n' r ' m'||n' m' n' m' n' r '

r ' r '
'm'||n' m' n' m' n' r ' [m' ||n'] [m' ||n'] [m'||n']|| r

R B B B b b B B B C C C c c C C C

E E E u u E E E 0, B 0, C 0, E 0

              
         

          
    

(4.13) 

These equations stand for the prediction that an accelerated observer makes for the 
physics of static observers. The components of the curvatures  are expressed in the 
reference system of the accelerated observers. One should obtain the same Ricci tensor 
by an inhomogeneous transformation of the connexion coefficients 

 

s' s' r ' s'

|m'n' m'n' s' n' |m' r 'm' s'n' m'n' s'

s' s s'n m s'

n'm' n'm's nm n'm'

R 'A 'A 'A 'A 'A 'A

'A L A L

   

 

 . (4.14) 

This implies the condition 

 
s' s' s' r ' s' r ' s' r '

| |m'm'n' s' s'n' r 'm' s'n' m'n' r 's' [m'r '] s'n'L L L L L L 2A L 0     . (4.15) 

Inserting (4.8) into the above equation we obtain the field equation for the Kruskal 
acceleration 

 
1

s' s'
||s' s'K K E 0  . (4.16) 

This is just the subequation of the field equations if the connexion coefficients have been 
transformed inhomogeneously. In the five-dimensional representation (a = 0,1,…,4) all 
subequations of the field equations decouple [1]: 

 

2
2

3
3

1 1

c' c '
||| c 'b' ||| a' b' a' c '

c ' c '
||| c 'b ||| a b a c'

c ' c ' c ' c '
||| c ' ||| c 'c ' c '

B B B 0, B B B 0

C C C 0, C C C 0

E E E 0, K K E 0

   

   

   

. (4.17) 

The equations for the gravitational acceleration and the Kruskal acceleration are 
expressed in a similar way, but one has to bear in mind that the Kruskal acceleration is 
due to a structure on the physical surface while the other equations describe the structure 
of the surface. 
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5. SUMMARY 

 

In this paper we have shown that the velocity of observers, freely falling or Kruskal 
accelerated to the center of gravitation, tends to the speed of light for r → 2M. No object is 
able to cross the event horizon of the Schwarzschild geometry. This agrees with our 
assumptions made at the beginning of the paper. The Schwarzschild radius fixes the 
boundary of the geometry. For r < 2M no geometry is defined  by the exterior 
Schwarzschild solution, independently of the co-ordinate system in use. Interpreting the 
Schwarzschild metric strictly geometrically  no Black Hole physics can be derived from the 
Schwarzschild solution. 

 

 

I am indebted to Prof. H.-J. Treder for his kind  interest in this paper. 
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