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Abstract: We investigate classical and newer models that describe a gravitational collapse. 
In our previous work, we examined well-known models using mathematical methods 
based on the use of rods and clocks. As a result, we obtained coordinate-invariant 
equations, which, however, revealed some contradictions. We also discuss in detail the 
possibility of black holes and singularity formation. 
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1.  INTRODUCTION 

We examine the results of numerous authors who dealt with gravitational collapse. 
We restrict ourselves to stellar objects that are preferably surrounded by a Schwarzschild 
field. 

We make some assumptions and remarks that we believe to be useful in building a 
collapsing model: 

A. We consider models with singularities to be unphysical. Singularities are points or 
areas where mathematics fails. 

B. There is no 'collapsing metric'. It has been known since Gauss that the line element 
on a surface can only describe the curvature of this surface, but not the change in 
this curvature. In order to mathematically record a collapse, one needs further 
information that can be obtained from the geometry or the Bianchi identities. 
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C. The lack of sufficient information about the collapse has the consequence that in 
many papers one or more variables remain unspecified. The cause of this 
incompleteness is usually not questioned. Rather, some assumptions are made 
about the missing quantities in the hope of obtaining a physically practicable 
solution. Computer techniques are also used to adjust variables. 

D. The question has to be clarified whether the metrics in use can be geometrized, i.e., 
whether the metrics can be assigned to comprehensible surfaces. 

E. Most approaches to collapsing models result in the contraction of the stellar object 
below the event horizon of the exterior Schwarzschild field and in forming a 
singularity - a black hole. Whether there are naked singularities, i.e., singularities 
that can be experienced by an observer who is outside the event horizon, is 
contradictorily discussed in the literature. 

F. We also consider whether and which linking conditions are specified at the 
boundaries between interior and exterior solutions. 

 

2. FALL THROUGH THE EVENT HORIZON 

 

 Most authors, dealing with a gravitational collapse of a non-rotating star, assume 
that the collapsing object is surrounded by a Schwarzschild field, described by the 
standard Schwarzschild metric 

  2 2 2 2 2 2 2 21
ds dr r d r sin d 1 2M / r dt

1 2M / r
       


. (2.1) 

From this relation, it can be seen that a singularity occurs at the location r 2M , i.e., at the 
event horizon. It has been discussed extensively in the literature whether this is a 
coordinate singularity or a real physical singularity. Since we feel that the term singularity 
is inaccurately defined, we circumvent the problem with a few considerations. 

A coordinate singularity can be removed by introducing other coordinates. Here, we 
present as an example the coordinates of Einstein and Rosen [1] 
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, (2.2) 

where 
2d  is the abbreviation for the lateral differentials. Here, R is the Cartesian extra 

coordinate in the flat embedding space and R 0  corresponds to r 2M . Also the 
isotropic coordinates 
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    

 

. (2.3) 

are frequently used. A look at the line element shows that the metric is regular over the 
entire region 0 r   , whereby r 0  is also located at infinity. More detailed information 

on the relations between Schwarzschild coordinates and isotropic coordinates can be 
found in our monographs [2]. The region r 2M  cannot be described with coordinate 
systems used in (2.2) and (2.3). 
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The metric (2.1) can be geometrized, i.e., a surface can be assigned to it, which 
clearly shows the geometrical properties of the model. The surface is known as Flamm's 
paraboloid, a 4th-order surface. It is a one-shell paraboloid of revolution that has its waist at 
r 2M . This is the end of the geometry, the surface cannot be continued into the region 
r 2M . 

Let us return to the question of why the position is called a physical singularity. 
Every object approaching the event horizon from infinity or an arbitrary position in free fall 
would reach the speed of light at this location. Gravity becomes infinite there and time no 
longer passes. These are remarkable properties that appear important to us when dealing 
with a gravitational collapse. In this light, the event horizon seems to be not only a 
geometric barrier but also a physical one. 

Nevertheless, many authors believe that the event horizon can be crossed. There 
was a long-lasting discussion among the authors Abramowicz, Agnese, Baierlein, Barceló, 
Bronikov, Cavalleri, De Sabbata, Dirac, Dymnikova, Gautreau, Gershtein, Pavšič, Katz, 
Kluzniak, Liberatis, Krori, La Camera, Lasota, Logunov, Loinger, Janis, Spinelli, Jaffe, 
Mazur, McGruder III, Mestvirishvili, Mitra, Öpik, Recami, Royzen, Shah, Shapiro, Sonego, 
Teukolsky, and Tereno. Paul, Lynden-Bell, Salzmann, and Visser [3-48]. We have 
summarized these arguments and counter-arguments in [2]. Mitra [49] describes in his 
textbook the historical development of the doctrine of the black hole. He brings several  
counter-arguments and lists numerous authors, including very prominent ones, who 
rejected the existence of black holes and briefly summarizes the arguments of these 
authors. He also supplements the representations with his own research results. 

One of the best-known attempts to use a new coordinate system to discover regions 
of the Schwarzschild model that are still unknown, even below 2M, originates from Kruskal 
[50] and Szekeres [51]. However, in a paper [52] we have shown that the Kruskal method 
has little new to offer on this topic. If we depart from the coordinate description and 
constrain ourselves to reference systems that represent rods and clocks, we are again 
limited to the region r 2M  in the Kruskal system as well. What is new is that the Kruskal 
system defines a new version of velocities for observers. Like free fall, this velocity is 
linked to geometry. It is obtained by converting the coordinate transformation into a 
Lorentz transformation. The latter defines a relative velocity that starts from zero and 
increases to the speed of light at infinity. We called the accompanying acceleration the 
Kruskal acceleration. 

In their textbook the authors Misner, Thorne, and Wheeler [53] (MTW) believe that 
objects that move in free fall from infinity or any position to the event horizon can cross it in 
finite proper time while an observer at infinity concludes that the object only approaches 
the event horizon asymptotically and that it takes an infinitely long time to do so. We dealt 
with this contradicting statement in a talk in Berlin, using simple words. Here we want to 
repeat the essentials. 

We simplify the derivation presented by MTW on several pages by removing 
quantities that are not directly used and detach ourselves from the term 'energy in infinity' 
introduced by MTW. What remains is a five-line that leads to the results of MTW. From its 
simple structure, one can see that the derivation is incorrect. 

The authors examined a line element that mixes the arc elements of a comoving 
observer with those of a non-comoving observer. While the speed of an object coming 

from infinity in free fall is geometrically determined using v 2M r  , the speed v '  of an 

observer coming from any position 
0r  must be derived by relativistically subtracting the 

speed at 
0r  from the speed related to infinity: 
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By mixing the arc elements, MTW obtain an expression for the velocity of fall related 

to 
0r , which contradicts the laws of the special theory of relativity. We have clearly shown 

this in the following graphic: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be seen that the fall velocity presented by MTW winds elegantly through the event 
horizon (dashed line) and becomes infinite at r 0 . The point r 0  is reached after a 
relatively short time. In the strictly relativistic representation, the fall velocity reaches the 
speed of light regardless of the starting position at r 2M , whereby an infinite amount of 

time passes. 
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Fig. 9. Fall velocity from any position 

 

 

Fig. 11. Proper fall time 
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Fig.10. Fall velocity from any position 

 

 

Fig. 12. Proper fall time 
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After the foregoing, it is clear that the event horizon is an impenetrable barrier for 
collapsing models when the central object is surrounded by a Schwarzschild field. Every 
point on the surface of a collapsing star can be identified with a point moving radially in the 
Schwarzschild field. In the case of a star made of incoherent matter, the pressure of which 
is thus neglected, the above considerations can be directly applied. A star with pressure, 
which cannot contract arbitrarily, defines a limit that is possibly above 2M. Using some 
well-known models, we will explore this problem in the next sections. 

 

3. HISTORICAL MODELS 

In 1939 Oppenheimer and Snyder [54] presented what is now known as the work 
that founded the theory of black holes, although the term 'black hole' was introduced much 
later. The OS model is made up of a collapsing interior and a static exterior solution. The 
exterior part is the Schwarzschild exterior solution which, based on Birkhoff's theorem, 
remains static even when the field-generating stellar object collapses. 

The OS model builds on an existing expanding / contracting cosmological solution 
by Tolman. The stellar object consists of incoherent dust with homogeneous density. Since 
in this case there is no internal resistance to contraction, the object can no longer be static. 
It collapses due to its gravitational forces. A completely pressure-free star is physically 
unrealistic. In the case of a collapse, the particles of a star finally come so close that 
pressure can be expected at a sufficiently high density. However, a pressure-free stellar 
object can approximately describe a dying star. When the thermonuclear processes inside 
a star have died down, it gives way to its gravitational attraction and collapses. The just 
discussed simplification to p 0  has mainly practical reasons. The integration of Einstein's 

field equations without this condition leads to considerable difficulties, and an appropriate 
analytical solution is difficult to find. 

The paper of OS initiated the research on gravitational collapse and was 
accordingly frequently cited. However, no one has attempted to examine this paper for its 
physical content. We have made up for this in four papers [55-58] and presented it clearly 
in [2]. 

In our first considerations, we closely followed the original paper of OS, but soon 
introduced auxiliary quantities that are closely related to geometric ones. Both solutions, 
the interior, and the exterior were developed in two different coordinate systems: the one 
that is comoving with the collapse and the one that does not comove. The transition 
between the two systems in particular provides information about how the collapse is 
taking place and thus brings to light the inconsistencies of the model. Our first aim was to 
examine the quantities and relations of the OS model, to set them up anew, bring them 
into connection with familiar ones, and prepare a geometrical interpretation. 

After some redesign, it was possible to identify the velocity of the collapsing star’s 
surface as the speed of an object moving in free fall in the Schwarzschild field. Further 
transformations show that the metric of the collapsing object can be expressed in 

comoving coordinates  r ',t ' in the form 

 
2 2 2 2 2 2 2 2 2ds dr ' r ' d r ' sin d dt '        K . (3.1) 

Here,  t 'K K  is the scale factor that specifies the measure for the contraction. It 

connects the comoving and the non-comoving radial coordinates by using 

 r r ' K . (3.2) 
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In the line element (3.1) t '  is the global time that applies to all particles that 
participate in the contraction and thus the proper time of all participating observers. This 
means that the metric discussed above describes a locally flat space. The metric has a 

Lemaître form and is typical for freely falling objects. The lapse function is 
4'4'g 1 . As a 

result, no gravitational forces act on the comoving observer, as is to be expected from 
Einstein's elevator principle. 

The 4-beine can be read from the metric (3.1) and the field quantities can be 
calculated from the Ricci rotation coefficients: 

 
m' m' m'

i 1 i 1 1 i
'U 0,0,0, , B ,0,0, , C , cot ,0,

r r r

     
        
     R R R

, (3.3) 

provided we hold onto the original Minkowski notation 4'x i(c)t ' . The first three 

components of these quantities correctly reflect that the space is locally flat, i.e., free of 
gravity. The lateral field quantities B and C describe the curvatures of a surface. The 4th 
components of all three quantities are the tidal forces, which describe the compression of 
the particles inside. From a complicated expression of OS we calculated the quantity 

  
3

gr
t '

2M
 R R  . (3.4) 

R  is half of the curvature radii of the Schwarzschild parabolae measured on the surface of 

the object. It can be interpreted as the radius of a spherical shell, which is part of the 

interior OS solution. 
gr  is the value of the radial variable on the surface of the object. 

Einstein's field equations are satisfied with the quantities (3.3). In the stress-energy 
momentum tensor, there is only the mass density 

 0 2

3
 

R
, (3.5) 

an expression that occurs in this form in other gravitational models. All other components 
of the stress-energy momentum tensor vanish. With (3.4), we also can use the expression 

 0 3

g

6M

r
  .  

From this, it can be seen that for 
gr   the mass density vanishes. The stellar object 

would have to have been infinitely large but massless at the time t ' 0  and still have filled 
an infinitely large cosmos. 

OS have given an interior solution for collapsing objects 

 
2 2 2 2 2 2 2 2 2 2

T
2

2

1
ds dr r d r sin d a dit ,

r
1

         


R

. (3.6) 

The expression 
Ta  is rather complicated, but on the surface, it accepts the corresponding 

expression of the exterior Schwarzschild solution. The first three arc elements of the metric 
(3.6) are identical to those of the interior Schwarzschild solution and describe a 3-
dimensional spherical cap. Since all four metric coefficients at the boundary surface match 
those of the exterior Schwarzschild solution, the 1st linking condition is fulfilled. 

OS did not specify the 2nd linking condition. It is often combined with the 
requirement that the first derivatives of the metric coefficients match at the boundary 
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surface. Nariai and Tomita [59-61] examined the linking conditions for the OS model and 
were of the opinion that the interior OS solution is not well adjusted to the exterior 
Schwarzschild solution. They replaced the exterior Schwarzschild solution with a 
complicated one while maintaining the interior OS solution. They used the linking 
conditions by O’Brien and Synge. Leibovitz [62] disagreed and found the 1st linking 
condition to be valid, but did not address the 2nd one. 

We have the impression that the commonly used linking conditions are not suitable 
for all models. Mitra [63] has not reported finding the common linking condition for the 
Schwarzschild model to be fulfilled and found a new interior solution that connects to the 
exterior one under these conditions. We [64] also investigated the problem and 
established a simple linking condition for the Schwarzschild model. It is required that not 
only the metric coefficients at the boundary surface should have the same values, also the 
tangents (cutting tangents) of both solutions should coincide. This is a requirement that is 
relatively easy to verify, as long as a model can be geometrized, i.e., both regions of the 
model can be represented by surfaces. The surfaces must touch each other and must 
merge smoothly, i.e., they must not have a kink. Thus, it is so that the continuity of the two 
OS regions is still worth discussing. 

OS also specified the relation between the comoving time t' and the time t of an 
observer at rest. Thus, a matrix can be formulated for the transformation between the 
comoving and the non-comoving coordinate systems. Finding such a transformation is 
eventually tedious. Probably for this reason other authors did not specify such a coordinate 
transformation for their models, or it was not possible to set up a coordinate 
transformation, because the model does not have an analytical solution. The primary 
purpose of using special coordinate systems is to provide the simplest possible basis for 
calculations. The great advantage, however, is that such a coordinate transformation is 
accompanied by a Lorentz transformation which contains velocity parameters. Once such 
a Lorentz transformation has been found, one also has the physical velocity of the collapse 
at hand, if one relates it to the velocity at the surface of the collapsing stellar object. 

The metric (3.6) satisfies Einstein's field equations. The stress-energy-momentum 
tensor in the non-comoving system contains currents of matter and is covariantly 
conserved. Although the exterior solution in the comoving system of OS is formally 
different from the Schwarzschild representation, it can be converted into the standard 
Schwarzschild form with a transformation that is very similar to the Lemaître 
transformation. It is obvious that the event horizon represents an insurmountable barrier, 
because the collapse velocity of the surface of the object, which can be read from the 
above-mentioned Lorentz transformation, exceeds the velocity of light at this location. 

OS showed with an approximation that after a certain stage of the collapse, no light 
can be emitted from this object, but there are no limits to the collapse. Mitra [65] [66] 
contradicted this. He found that in addition to a missing factor ¼, the relevant quantity in 
this approximate relation has the wrong sign. He concluded that the OS model cannot 
provide any evidence of a black hole. 

The stellar OS object would have an infinitely large extension in its initial state, 
collapses in free fall, and leaves empty space behind, in which a Schwarzschild field 
spreads. On the other hand, the collapse velocity at the event horizon would reach the 
velocity of light. This can be ruled out by the relativity principle. The force of gravity and the 
tidal forces would be unlimited there. No star can exist under these conditions. Due to 
these considerations, the OS model cannot be used as a base model for a black hole. 

 

McVittie [67] dealt with a class of collapsing solutions, introducing the methods of 
cosmology to gravitational physics. He also dealt with an ansatz with p 0 . In this case, 
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the pressure and energy density become infinite after a finitely long time, and the inward 
speed of the fluid elements also becomes infinite. The example shows the difficulty of 
setting up a collapsing model with non-vanishing pressure. We therefore only treat 
McVittie's cases with p 0 . 

McVittie starts with the metric 

 2 2 2 2 2 2

2

2

0

1
ds dr ' r ' d dt '

r '
1 k

 
 
    
 
 

 

K

R

. (3.7) 

Here, the curvature parameter k takes the values 

  k 1,0, 1  . (3.8) 

The scale factor K  depends on the time, while r '  and t '  are the comoving coordinates 

referring to the collapse. For k 0 , one gets the already discussed OS model. We [2] also 
examined the other two cases, with less satisfactory results. They are hybrid models. On 

the one hand, the lapse function has the value 
4'4'g 1  in the time-like part of the metric 

(3.7). Thus is t '  the global time that applies equally to all points of the collapsing object. 
No gravitational forces can be derived from the lapse function. This is the typical property 
of free fall. Thus, one must assume that the object McVittie is looking at collapses in free 
fall and that the space must appear locally flat to an observer who is comoving with it, in 

accordance with Einstein’s elevator principle. However, the values k 0  define a local 
spatial curvature. This can also be seen when calculating the field quantities from the Ricci 
rotation coefficients: 

 I I
m m m

a ai 1 i i
B ,0,0, , C , cot ,0, , U 0,0,0,

r r r

     
           

    
K K K

K K K
. (3.9) 

Here, 
2

I

0

r '
a 1 k 

R
is the factor that indicates the deviation from the locally flat geometry. 

Only for k 0  is 
Ia 1  and the space appears to be flat. The 4th components of the 

quantities correctly reflect the change in volume that surrounds any point of the collapsing 
object. The first three components commonly correspond to an observer who does not 
participate in the contraction. The equation (3.9) shows a mixture of comoving and non-
comoving components. We, therefore, refer to models that collapse in free fall and have 
mixed components as hybrid. Thus, it can be seen that the geometrical and physical 
structure of a model can be examined with the help of the tetrad method and the Ricci 
rotation coefficient. 

In his textbook [68], Weinberg discussed a gravitational collapse in detail. Like 
McVittie, Weinberg assumed a line element of type (3.7) and obtained a pressure-free 
model for the case k 1 . The model is hybrid as well. The field quantities have mixed 

components analogous to (3.9), which results in a rather complicated expression for K . In 

[2][69][70], we formally extended Weinberg's annotations and obtained the common 

expression 2

0 3  R  for the mass density, where is R  the radius of a spherical cap, 

which is described by the spatial part of the metric (3.7). Weinberg calculated the collapse 

time from K . After a finite time, the spherical cap shrinks to a point with an infinitely high 

mass density. At the end of the collapse, no time is passing. 
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Weinberg also specified a non-comoving coordinate system, which makes it 
possible to set up a matrix for a coordinate transformation connecting these systems and 
to assign a Lorentz transformation to it. The relative velocity and the Lorentz factor can be 
read from the Lorentz transformation. If these quantities are related to the surface of the 
object, values are obtained that differ considerably from the special theory of relativity: 

 
g g g

col col

g g

2M 2M 2M
1

r ' r r '
, v

2M 2M
1 1

r r '

 

   

 

 . (3.10) 

The development of the collapse is reminiscent of MTW graphics in Fig. 1 and Fig. 3. At 

the beginning of the collapse, the initial velocity colv 0  and the Lorentz factor 
col 1   as 

the consequence of 
g gr r ' . At 

gr 2M , i.e., when the surface of the stellar object has 

reached the event horizon of Schwarzschild geometry, is col gv (r 2M) 1    and col  . 

The collapsing object has reached the velocity of light in free fall and the surface would 
move faster than the velocity of light after having crossed the event horizon, whereby the 
force of gravity first becomes infinite and then imaginary. 

Weinberg's model is not a realistic representation of a process that can take place 
in Nature. 

 

4. THE COLLAPSE OF SCHWARZSCHILD'S INTERIOR 
SOLUTION 

 

It is noticeable that when trying to describe a gravitational collapse, it is usually 
assumed that the collapsing object is reasonably surrounded by a Schwarzschild field. 
According to Birkhoff's theorem, this field remains unaffected by any change in the 
extension of the field-generating object. Numerous approaches were made for the metrics 
of this object and the two linking conditions to the exterior Schwarzschild solution were 
sought or sometimes circumvented. Apart from one unsuccessful attempt by Narlikar [71], 
we are not aware of any further attempts that derive a collapsing model with the help of the 
interior Schwarzschild solution as a starting model. A 100 years later Karl Schwarzschild 
published his solutions, we [72] attempted to figure out a collapsing model based on the 
interior Schwarzschild solution. 

The question arises as to why the problem was not addressed much earlier. There 
may be some reasons for this: The representation of the Schwarzschild interior solution 
was chosen unfavorably and did not give any clue of a collapse, the geometric background 
of the metric was not worked out, the mathematical effort is considerable and there were 
compunctions that one has to detach from the fascinating idea of black holes. One could 
have known since 1916 that the complete Schwarzschild solution, consisting of the interior 
and exterior solution, definitely rules out the formation of black holes. 

We did not approach the theory of collapse by solving Einstein's field equations, but 
rather we assembled it from existing geometric elements. 

Therefore, we try first to work out the geometrical basis of the Schwarzschild interior 
solution and then turn to the collapse. The metric can be written in canonical form 
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2 2 2 2 2 2 2 2 2

T
2

2

1
ds dr r d r sin d a dt

r
1

      


R

. (4.1) 

Here, r  is the radial coordinate and R  the radius of a spherical cap, which is 

described by the spatial part of the metric. 
Ta  is the lapse function. The curvature 

parameter k 1  can be read off. Thus, the geometry is positively curved. With the 
fundamental relation 

 r sin R   (4.2) 

(4.1) takes the form 

 2 2 2 2 2 2 2 2 2

T2

1
ds dr r d r sin d a dt

cos
      


  (4.3) 

where  is the polar angle of the spherical cap. 

We note the time-like metric coefficient in the original Schwarzschild form 

  T g

1
a 3cos cos

2
    . (4.4) 

Here, the marker g denotes the value of a quantity at the boundary of the two geometries. 
In order to better understand the metric (4.1), we use the original Minkowski notation 

 4dx i c dt  and write 

 
gidt di   . (4.5) 

Here, 
g  is the radius of curvature of the Schwarzschild parabola at the boundary surface 

of the interior and exterior geometry. Although Flamm's paraboloid has largely entered the 
literature, significant findings were not drawn from Flamm's work, probably because the 
paper is written in German. We refer to an important relation by Flamm [73]: 

 
g 2  R .  (4.6) 

The radius of curvature of the Schwarzschild parabola is twice as long at the boundary 
surface as the radius of the spherical cap of the interior geometry. Thus, we have 
explained the factors ½ and 3 in (4.4) and are now defining: 

  T g ga idt cos cos di       
 

R R .  (4.7) 

Here,  g gcos  R  and cosR  are the radii of two (open) concentric pseudo-

circles and the flow of time corresponds to an imaginary circular ring sector. At the 

boundary 
g  , the relation T g ga idt cos di       is obtained. This expression can be 

converted into the well-known Schwarzschild term. This shows that the 1st linking condition 
is also fulfilled for the time-like metric coefficient. We presented the 2nd linking condition in 
detail in [64]. 

Flamm’s relation (4.6) proves to be exceedingly useful for understanding 
gravitational collapse. It has proven suitable to assume that the collapsing object can be 
represented by a series of self-similar spherical caps that slide down Flamm's paraboloid 
while maintaining the 2nd linking condition. This means that the spherical cap and the 
Flamm's paraboloid always have a common cutting tangent. We have shown this in Fig. 5. 
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Fig. 5. The collapse 

At each point in time of the collapse, the Schwarzschild parabola defines according to (4.6) 
the curvature and extent of the spherical cap. Lastly, this means that the gravitational 
collapse cannot be derived from a 'collapsing metric', instead its development is 
determined by the surrounding of the collapsing object. 

As Schwarzschild has already stated, the pressure inside the object is given by 

 
g

2

g

cos cos3
.p
cos 3cos

 
  

 R
.  (4.8) 

It has a critical value when g

1
cos

3
  . In the center of the star ( 0  ), the pressure 

becomes infinite at the critical aperture angle 
g . From this one calculates [2] the lower 

limit for the possible extent of the star as 

 m m

g g gr 2.25M, r r  . (4.9) 

Thus, the interior solution has an inner horizon. This means that there is no non-
rotating star in the universe that is smaller than 2.25M. Thus, the inner horizon is always 

above the event horizon and the complete Schwarzschild model downgrades the event 
horizon to a mathematical artifact. It also follows that a collapsing star can only reach this 
horizon asymptotically, as we will mention later. 

The collapse velocity is made up of two components according to Einstein's law of 
addition: 

 

3 3

g gR I
C R g I 0

R I g 0

r r 'v v r r '
v , v , , v ,

1 v v 2M 2M


      


R R

R R
. (4.10) 

On the surface of the star is g

R gv 2M r  , thus, identical to the velocity of an observer in 

free fall from infinity in the exterior Schwarzschild field. From this, 
g

I gv 2M r '   is 

subtracted relativistically. The velocity of the surface of the collapsing star is therefore 

always smaller than that of the freely falling observers in accordance with 
Ta 1 . At the 

beginning of the collapse the values are 
g g g 0r r ' , R R , and thus, g

Cv 0 . The structure 

just discussed is analogous to Figs. 2 and 4. However, the curve of the collapse time 

approaches the inner horizon 
m

gr 2.25M  asymptotically. 
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Fig. 6. Evolution of the collapse 

The collapsing Schwarzschild solution describes an 'eternally collapsing object' 
(ECO). The term ECO was introduced by Mitra [74] for several reasons from astrophysics. 
The interior Schwarzschild solution is closely connected to the exterior one via Flamm's 
relation (4.6). Without Flamm's relation, any geometric interpretation is possible. Thus, the 
interior Schwarzschild solution is the first candidate to describe a collapse. 

In [72] we illustrated the relation between the velocities. For 
Iv 0  one gets the 

pressure-free OS model. The field quantities of the Schwarzschild interior are derived 
using the projector technology developed in [2]. From the equation (4.10), one can 
calculate the Lorentz factor and set up a Lorentz transformation that mediates between the 
comoving and non-comoving reference systems. As expected, the lateral field quantities 
do not appear to be flat, but contain 4th components, the tidal forces. Since there is no free 
fall, gravity does not vanish in the comoving system. 

The complete Schwarzschild solution, consisting of the interior and exterior 
solutions with or without collapse, describes a singularity-free model that does not allow 
any black hole, singularities or naked singularities. A discussion about cosmic censorship, 
the no-hair theorem, or Hawking radiation is superfluous. 

 

5. SUMMARY 

We have presented an overview using three classical models that deal with the 
methods of gravitational collapse commonly used in the literature. We contrasted these 
models with our model of the collapsing interior Schwarzschild solution. In the attached 
bibliography, we mention and comment on numerous other approaches, but note that most 
authors assume that black holes and singularities are possible. However, the bibliography 
does not claim to be complete. References to other models can be found in the quotations 
of the papers. 
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7. BIBLIOGRAPHY 

 

Abrahams and Evans found a critical parameter for the formation of a black hole when an axisymmetric 
object collapses. They used numerical methods. 

Acquaviva et al. studied the thermodynamic properties of black hole formation and the change in 
gravitational entropy in an Oppenheimer-Snyder-Datt collapse. 

Adler studied collapsing shells of incoherent light or zero dust and spheres of a perfect fluid. Some with 
pressure while, some with non-uniform density. To obtain black holes, he used the metrics in Eddington-
Finkelstein and Kruskal coordinates, as well as in Painlevé and Gullstrand form. 

Ali assumed a fairly general metric for a dust model. After collapsing into a black hole, the particles inside 
and outside are said to have different horizons. This allows particles falling into a black hole from the outside 
to interact with the particles inside it. 

Ames and Thorne described the spectral distribution of radiation from a star collapsing through the event 
horizon. 

Banerjee discussed naked singularities that can be observed by an external Schwarzschild observer. 

Banerjee studied an inhomogeneous spherical distribution of dust. He started from a general spherical 

approach. His interest was in the singularity 
2

11
g r 0  , where, the radial separation vanishes, although the 

circular distances remain finite. At this location, the mass density becomes infinite. 

Banerjee presented a class of solutions for a fluid sphere with radial heat flow. He put on the line element of 
the interior solution with time-dependent parameters, but specified the linking condition to the exterior Vaidya 
metric, which contains a cross term. The special thing about the solution of BCD is that during the collapse 
the surface of the object does not meet a horizon, but eventually a (naked) singularity is formed. 

Banerjee noted that the naked singularities found by Yodzis et al. were described in one of his earlier 
papers. 

Banerjee and Banerji found a class of exact interior solutions for a spherically symmetric fluid. An initial 
outward motion is reversed. Then, a collapse to a singularity of infinitely high mass density takes place. 
There are cases where the initially collapsing system bounces back so that a singularity is avoided. 

Barreto studied the influence of viscosity on a gravitational collapse of a radiating sphere. He started with 
the Vaidya metric, but transformed the components of the stress-energy-momentum tensor into an 
orthogonal reference system to interpret them physically. The equation of state of the model shows the 
extent of anisotropy caused by viscosity. He went into little detail about an exterior field and the linking 
conditions: the radial pressure at the boundary of the viscous sphere does not vanish. 

Barreto, Herrera, and Santos extended the concept of the adiabatic index, which measures the stiffness of 
the equation of state for adiabatic systems, to systems that emit or absorb energy. The collapse of two 
radiating models was studied. 

Barve described a simple method to determine whether or not a collapse of spherically symmetric dust can 
form a naked singularity. 

Barve, Singh, and Witten derived the acceleration of a fluid element during a spherical collapse of a perfect 
fluid with tangential pressure. They obtained singular and naked singular solutions. 

Bhattacharya et al. applied the stress-energy-momentum tensor to a massless scalar field and specified the 
collapse conditions. 

Bayin found some time-dependent solutions of a radiating fluid sphere. The stress-energy-momentum tensor 
is the sum of the stress-energy-momentum tensors of a perfect fluid and radially expanding radiation. The 
changes over time were assumed to be so slow that a quasi-static approximation was sufficient. 

Bekenstein studied a collapsing charged sphere joining the exterior Reissner-Nordström solution. The 
question raised whether the charge can prevent a total collapse. 

Bergmann derived a new metric from the Schwarzschild metric with coefficients satisfying the condition

11 44
g g 1  but with the other metric coefficients being constant. Then he brought the metric into an isotropic 

form and concludes a possible collapse. 
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Bini and Mashhoon studied time-dependent gravity models and their collapse scenarios. They related the 
motion of the particles to the gravitational collapse. An axial collapse and plane gravitational waves were 
treated. 

Biroukou et al. described a formalism and a numerical approach for a spherically symmetric scalar collapse 
in arbitrary dimensions and with the cosmological constant. 

Bizoń, Chmaj, and Schmidt studied 4+1 dimensional Einstein field equations that allow for gravitational 
waves with radial symmetry. The gravitational collapse was investigated using numerical methods. 

Bondi started from a general spherical symmetric ansatz, with metric variables depending on r and t. He 
calculated the stress-energy momentum tensor in general forms and used local Minkowski coordinates, 
which we call tetrads. He assumed observers moving with a radial velocity and represented the stress-
energy-momentum tensor in comoving and non-comoving frames. Finally, he neglected the time dependence 
of the metric variables in the spatial components of the stress-energy-momentum tensor. In this way, he was 
able to show that the configuration is static at all times. For the sequence of the static models, he obtained 
relations from the stress-energy momentum tensor. 

Bonnor and Faulkes found an exact interior solution for an adiabatic spherically symmetric motion of a 
perfect fluid with uniform density but non-uniform pressure. The solution is connected to the exterior 
Schwarzschild solution with a moving surface. 

Bonnor, Oliveira, and Santos dealt extensively with the problem of a radiative spherical collapse. They also 
discussed the interesting case where the pressure balances the heat flow, so that matter can be in free fall. 

Brady raised the question of whether a scalar field collapse can create a zero-mass black hole. 

Brady considered the collapse of a homothetic scalar field. Using a mixture of analytical and numerical 
methods, he showed that there are two classes of solutions with black holes and naked singularities. 

Brady et al. performed numerical studies of gravitational collapse for stiff fluids. They constructed the critical 
solution as a scalar field solution using a self-similar approach. 

Brito et al. studied a cylindrically symmetric inhomogeneous collapsing model. They obtained an exact 

solution, which can be transformed into an already known solution for 0  . 

Brustein and Medved investigated whether the Buchdahl bound of the interior Schwarzschild solution can 
be prevented by introducing negative pressure. 

Cahill and Taub envisaged a spherically symmetric model that allows for a conformal transformation. The 
metric coefficients were applied as a function of time. 

Carr et al. considered a spherical collapse of a self-similar solution. They focused on the equation of state 
p    and showed that the global nature of the solutions is sensitive to  . 

Chakraborty and Chakraborty described a cylindrically symmetric gravitational collapse of an anisotropic 
perfect fluid connected to an exterior cylindrically symmetric solution. The radial pressure does not vanish at 
the surface of the fluid. Gravitational waves originate outside of the fluid. 

Chan proposed a model for a collapsing radiating star with shear motion and radial heat flow. At the 
beginning of the collapse, the pressure is isotropic but becomes anisotropic due to the shears. Because the 
star radiates away all of its mass during the collapse, neither a black hole nor a naked singularity is formed. 

Chan described a collapsing model of isotropic fluids with shear viscosity, heat flow, and radiation. The initial 
isotropic pressure becomes anisotropic during collapse due to shearing. The quantities introduced in the 
stress-energy-momentum tensor remain undetermined. 

Chan presented the model of a collapsing radiant star with heat flow. He analyzed the density, pressure, and 
luminosity. The exterior metric is the Vaidya metric. 

Chan found an analytical solution to Einstein's field equations for the collapse of the radiating body 
consisting of an isotropic fluid with shear and radial heat flow. 

Chan obtained further results for an isotropically collapsing body described by Kolassis and Santos. He 
found a connection between radiation density and heat flow. 

Chan proposed a collapsing radiating star composed of a shearing fluid with bulk viscosity. The star emits 
heat flow and radiation. Initially, the pressure is isotropic, but steadily becomes anisotropic. The problem is 
solved numerically. 

Chan, Herrera, and Santos studied the effects of shear and shear viscosity on dynamic instability. 
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Chan, Herrera, and Santos studied instabilities concerning local anisotropy and radiation. Anisotropy can 
drastically change the stability of the system. 

Chan and da Silva da Rocha studied the collapse of thick spherical shells composed of self-similar shear-
free fluid with heat flow. All energy conditions are satisfied and naked singularities emerge. 

Chan et al. studied the effect of heat flow on the dynamic instability of a non-adiabatic spherical collapse. 

Chandrasekhar studied the stability conditions for a radially oscillating gas sphere where the baryon number 
is said to be preserved. 

Chandrasekhar introduced the term 'highly collapsed' and attempted to obtain numerical results. 

Chase studied the case of a thin shell of a charged surface. Under optimal conditions, the system is stable. 
The instability starts at a certain critical radius, which is always much higher than the gravitational radius of 
the Nordström model. 

Chakraborty and Chakraborty considered a cylindrically symmetric collapse of a perfect fluid connected to 
an exterior cylindrically symmetric solution using the Darmois junction condition. The radial pressure of the 
anisotropic fluid does not vanish at the boundary and is related to the shear viscosity. 

Chakraborty, Chakraborty, and Debnath studied quasi-static Szekeres models with perfect fluid and with 
tangential stresses and anisotropic pressures. The gravitational collapse has been considered. 

Chakravarty, Choudhury, and Banerjee found general methods to obtain exact solutions to Einstein's field 
equations. They also allow time-dependent metric coefficients. 

Chatterjee and Banerji, following a paper by Liang, described three classes of non-rotating collapsing dust 
models. 

Chiba suggested a spindle-shaped naked singularity in a prolate collapse. The problem was solved 
analytically and numerically. 

Chirenti and Saa studied the charged Vaidya metric in double-zero coordinates. In these one can describe a 
non-statically charged black hole with varying mass and charge. Naked singularities appear. 

Choptuik reckoned all the numerical studies for a spherically symmetric collapse of a massless scalar field 
and found a critical parameter for the formation of a black hole. 

Clément and Fabbri presented a collapsing solution in 2+1 gravity with the cosmological constant minimally 
coupled to a massless scalar field. 

Christodoulou equipped collapsing models with a scalar field, showing that naked singularities are possible. 

Christodoulou dealt with the collapse of an inhomogeneous spherical dust cloud and cosmic censorship. 

Christodoulou treated a massless scalar field as a material model. Under certain conditions, a black hole is 
formed surrounded by a vacuum. 

Christodoulou extensively examined the validity of cosmic censorship in the context of a spherical collapse 
of a scalar field. 

Cissoko et al. studied a gravitational collapse using the cosmological constant. The linking conditions 
between static and non-static models were derived. Of the three apparent horizons, only two are physically 
significant: the black hole horizon and the cosmic horizon. 

Cocke used the cylindrical form of the Friedmann metric to obtain an infinite cylinder of an incoherent fluid. 
The exterior metric is obtained by requiring that the 1st and 2nd fundamental forms are continuous at the 
boundary. The exterior metric is non-static and can be represented in Einstein-Rosen form. 

Condron and Nolan studied scalar field solutions of cylindrical symmetry. In self-similar models, the metric is 
described by a set of variables. 

Consenza et al.. The evolution of radiating spheres was studied. The field equations were numerically 
integrated for two models. 

Cook studied comoving coordinate solutions of spherically symmetric fluids with spatially uniform density but 
not-uniform pressure. The sign of the spatial curvature of these models can vary over time. He believed that 
it is not necessary to know all the parameters of the models to record all the properties of space-time. 

Cooperstock, Jhingan, Joshi, and Singh. Assuming the weak energy condition, they studied the nature of 
non-central self-focusing singularities that can arise in a spherical compact object in a gravitational collapse. 

Dandach and Mitskiévic found families of metrics in synchronic coordinates that generalized Tolman 
metrics for perfect fluids with pressure. New arbitrary functions appear. 
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Dai and Stoikovic calculated the collapse of two different shells. One consists of dark matter and is 
completely transparent. The other consists of ordinary particles but is fully reflective. Based on Birkhoff's 
theorem, the interior of the shell is assumed to be flat. 

Das and Tariq described a spherical collapse of an anisotropic fluid. They defined an equation of state and 
required Synge's linking condition for their solution. A black hole is formed, with the fluid remaining 
anisotropic and having positive energy, and 'radial' pressure. However, motion in the fluid is superluminal or 
tachyonic. The object is collapsing from infinity at a constant speed. 

Das, Tariq, and Aruliah studied anisotropic fluids collapsing from infinity into a black hole. They assumed an 
equation of state and used Synge's linking condition. Within the event horizon, matter takes on an exotic 
state. 

Das and Kloster found a class of exact solutions in Tolman-Bondi coordinates. At the boundary, the linking 
conditions of Synge-O'Brien and Israel are satisfied. 

Datt studied spherical time-dependent solutions in a general form, which, however, leaves open two arbitrary 
functions of r. 

Datta extended Einstein’s and Strauss' rotating star model to a nonstatic one. Under certain circumstances, 
the system can collapse to a minimum volume and bounce. 

De extended the Reissner-Nordström model with time dependence of the metric coefficients. The solutions 
of the charged Einstein field equations leave open one parameter that depends on r and one that depends 
on t. Specializations of these parameters lead to the charged static model or the OS model. 

Debnath, Chakraborty, and Barrow studied naked singularities for a dust model with 0   in n+2 

dimensions in the Szekeres model. 

Debnath, Nath, and Chakraborty. The linking conditions between static and non-static models were studied 
in terms of gravitational collapse. The physical meaning of the apparent horizon was discussed and the 
cosmological constant was also considered. 

De la Cruz and Israel considered a charged body surrounded by a thin shell of charged dust falling toward 
that body. The collapse is also possible if the shell has fallen below the event horizon. The problem was 
handled using an analytically extended Reissner-Nordström solution. 

De la Cruz, Chase, and Israel studied a collapse with asymmetry. Magnetic dipoles and gravitational 
quadrupoles were analyzed. 

Demianski and Lasota extended a model proposed by Bondi. During the collapse, the body contracts to 
zero volume and radiates all of its mass. 

Deshingkar, Joshi, and Dwivedi studied the nature of the central singularity, which forms in a spherically 
symmetric collapse. There is always a strong curvature singularity, with the tidal forces diverging strongly. 

Deshingkar, Joshi, and Dwivedi. Naked singularities emerge as the final state of an inhomogeneous dust 
collapse. Geodesics were dealt with in detail. 

Deshingkar et al. studied the influence of the cosmological constants on the final state of a spherical 
inhomogeneous collapsing dust cloud. The initial data of a bounce in terms of density and velocity profile 
have been characterized in detail. 

De Oliveira and Santos studied the linking condition for a magnetodynamic fluid with heat flow. The 
radiation is described by the Reissner-Nordström-Vaidya metric. 

De Oliveira, Santos, and Kolassis treated a collapsing radiating star composed of a shear-free isotropic 
fluid with radial heat flow. The model has pressure, but free parameters remain open. 

De Oliveira and De Pacheco studied the radiation pulses in optical, X-ray, and γ-ray domains resulting from 
a neutron star collapse. 

Di Prisco et al. described a charged dissipative spherical gravitational collapse with shear. Viscosity effects 
are also addressed. Outside the fluid is a Reissner-Nordström-Vaidya field. The linking condition was 
adapted to this field. 

Di Prisco et al. studied the linking conditions for a charged, dissipative collapse with shear and viscosity. 

Di Prisco, Herrera, and Varela studied the fluctuations of local anisotropies of homogeneous, self-
gravitating compact objects. The metric coefficients are time-dependent, but no analytical form is given. 

Di Prisco et al. studied the influence of processes on the evolution of a radiating star before the system 
relaxes into diffusion. 
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Di Prisco et al. considered cylindrically symmetric metrics. The interior is a fluid with anisotropic pressure, 
the exterior a vacuum Einstein-Rosen metric connected with the Darmois linking condition. 

Di Prisco, Herrera, and Esculpi studied a collapse of a radiating sphere with heat flow. They dealt with 
luminosity profiles and relaxation times. 

Doroshkevich, Zel'dovich, and Novikov studied the collapse of non-symmetrical and rotating masses. 
They found that the properties of such collapsing matter are similar to those of a spherical collapse. 

Dündar, Arik, and Mirzaiyan studied a gravitational collapse of a dust shell. Static and oscillating solutions 
have been found, as well as shells that never reach the singularity. 

Dwivedi and Joshi studied a class of non-self-similar Tolman-Bondi dust collapse models. They have strong 
curvature singularities and violate cosmic censorship. 

Ellis found the Schwarzschild theory unsuitable for the construction of a particle model. He envisioned a new 
geometry coupled to a scalar field. Its double-sided Schwarzschild construct allows for positive and negative 
mass and time-dependent quantities. 

Faulkes studied solutions for inhomogeneous matter surrounded by a Schwarzschild field. He gave 
analytical expressions for pressure and energy density, which, however, contain arbitrary functions of time 
whose values are restricted by the linking conditions. 

Faulkner, Hoyle, and Narlikar followed the solution of Oppenheimer and Snyder. They showed that a signal 
from an outside observer never reaches the surface of an object collapsing in free fall. They specified line 
elements in comoving coordinates for the interior and exterior of the object. The latter can be transformed 
into the standard Schwarzschild form. This interior metric differs significantly from the Schwarzschild interior 
metric. 

Fayos and Torres build on the radiating Vaidya solution that describes the exterior field and matched an 
interior solution that radiates matter. This avoids singularities. 

Fayos, Jaén, Llanta, and Senovilla connected a general spherically symmetrical radiating Vaidya metric 
with the Darmois linking condition and studied the time dependence of the model. 

Ferraris, Francaviglia, and Spallicci criticized the limitations of the McVittie metric. The pressure is said to 
be infinite and the energy negative at the event horizon in astrophysical applications. 

Fimin and Chechetin published a comparative study of the Hilbert and Schwarzschild metrics, and a 
collapse of the Tolman metric. 

Florides found that a collapse of a spherical system with a mass of incoherent matter in the context of 
Newton's theory is identical to the relativistic results of Oppenheimer and Snyder. 

Foglizzo and Henrikson studied the collapse of homothetic ideal gas spheres, where naked singularities 
appear. In the case of a plane collapse, singularities are absent. 

Fowler -studied the stability of supermassive stars. He showed that a small contribution from rotation can be 
sufficient to avoid star instability. 

Frolov constructed a self-similar solution of a continuous spherically symmetric collapse of a scalar field in n 
dimensions. Among them were also some closed-form solutions. 

Frolov and Pen studied the global structure of a critical collapse model of a scalar field. They were able to 
integrate through the event horizon with no problems. 

Fujimodo studied the collapse of a rotating gaseous ellipsoid. He assumed a suitable temperature 
distribution in the initial ellipsoid and adopted a special formula for the cooling rate of the gas. 

Gao et al. found that the mass of a black hole can increase as it absorbs dark energy. The effect is said to 
have significance for astrophysics. 

Gao and Lemos studied thin massive charged dust shells based on the Reissner-Nordström solution in 
higher dimensions. 

Garfinkle and Vuille [studied a collapse with the cosmological constant. Space-time consists of two regions, 
one collapsing, the other inflationary. 

Ghezzi extended the Reissner-Nordström solution to a time-dependent model and added an interior time-
dependent solution. He dealt extensively with the junction conditions and comoving coordinate systems. He 
adjusted open parameters using numerical methods. 

Ghezzi studied the stability of a charged neutron star. Black holes and naked singularities are formed. 
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Ghosh and Beesham studied the naked singularities in a gravitational collapse of an inhomogeneous dust 
cloud in a higher-dimensional Tolman-Bondi model. Higher dimensions favor black holes rather than naked 
singularities. 

Giacomazzo et al. studied the collapse of a differentially rotating neutron star. Models with different angular 
momentum were examined. A rotating black hole resulted. 

Giambo studied the conditions under which gravity coupled to a self-interacting scalar field. It determines the 
formation of a singularity. 

Giambo et al.. In a gravitational collapse, the final state has been studied without simplifying assumptions. 
The authors used new methods based on non-linear techniques. Naked singularities form. 

Glass considered the shear-free motion in a spherically symmetric perfect fluid. In the conservation law, he 
allows a time-dependent energy density. The field quantities provide an unspecified function that is related to 
the gravitational energy. 

Glass and Mashhoon described a collapse around a core of a star. The collapsing region grows 
monotonically until the Schwarzschild horizon forms. The system could describe the final stage of a 
collapsing star cluster. 

Glass. New solutions for a shear-free collapse with heat flow have been derived from known solutions for 
bound spherical perfect fluids. It was linked to the Vaidya solution. 

Glazer generalized Chandrasekhar's pulsation equation for a charged homogeneous model. The influence of 
the electric charge on the dynamic stability was worked out. 

Gonçalves and Jhingan analyzed a spherical dust collapse with non-zero radial pressure but zero 
tangential pressure. For certain values one gets an analytical solution. Occasionally, visible and invisible 
singularities arise. 

Gonçalves and Jhingan found an analytical solution for a collapse of an infinitely long cylindrical shell, 
producing a singularity but no apparent horizon. 

Gonçalves, Jhingan, and Magli. The final state - a black hole or a naked singularity - in a gravitational 
collapse with tangential stresses has been classified depending on the initial conditions and the equation of 
state. 

Govender presented a dissipative collapse model with heat flow. The interior of the star is fitted to a 
generalized Vaidya solution. Variables remain undetermined. 

Govender et al. presented a radial heat flow collapse leading to superdense cold stars. The model is 
connected to Vaidya's exterior radiation metric. 

Govender et al. considered a collapse starting from an initially static configuration. Energy is dissipated by 
radial heat flow. It reflects that a singularity can never form and that the star mass is completely vaporized in 
a finite time. 

Govender and Thirukkanesh studied a dissipative collapse with the cosmological constant. The exterior is 
represented by the Vaidya metric. 

Govender, Reddy, and Maharaj studied a dissipative collapse of a radiating star with radial heat flow. They 
showed how shear affects collapse. These increase the temperature in the interior. The authors also gave 
the thermodynamic quantities for the interior of the star. 

Govender, Maharaj, and Martens denote a particular collapsing model as causal. It is shear free and the 
interior connects to the exterior Vaidya solution. The heat of reaction leads to the self-consistent 
determination of the temperature. The collapse begins with an infinitely large radius and zero mass density. 

Govender, Martens, and Maharaj. Results based on the perturbation of a static star show that relaxation 
effects contribute to a significant increase in the central temperature and temperature gradient. 

Govinder and Govender continued their investigations concerning a radiative stellar collapse and presented 
two new solutions to the temperature equation and another result for nonzero acceleration. 

Govinder and Govender presented an exact solution to the temperature equation and the temperature 
profiles of a collapsing star. 

Govinder and Govender described a radiating star whose area radius during evolution is equal to its own 
radius. A new family of solutions describes the dynamic behavior of a Euclidean star. Singularities were 
avoided by appropriate choice of open constants. 
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Goswami presented a new class of solutions to Einstein's field equations for a spherical collapse of dust 
matter coupled to heat flow. They all bounce before reaching the singularity. The star explodes away to 
infinity. 

Goswami and Joshi developed the theory of a collapse in n-dimensions. The final state of a stellar object is 
a singularity or a naked singularity, depending on the initial values chosen. 

Goswami and Joshi constructed a class of perfect fluid models that have pressure and inhomogeneity. The 
formation of a black hole is imperative. 

Goswami and Joshi showed how a collapse evolves from initial data. Given initial pressure and mass 
density, a black hole or naked singularity is formed depending on free functions and the equation of state. 

Goswami and Joshi studied how pressure affects the fate of a continuous collapse. The pressure gradient 
is critical to black hole formation, trapped surfaces, and apparent horizons. 

Grammenos performed a hydrodynamic treatment of a Friedman-type non-adiabatic spherical collapse. The 
conclusions are said to be consistent with the predictions of stellar evolution. 

Guha and Banerji studied the dynamics of a cylindrical anisotropic fluid with dissipation in terms of heat flow, 
radiation and shear viscosity. 

Gundlach and Martín-García referred to 'critical phenomena' for black hole formation. 

Gundlach gave an overview of critical phenomena for gravitational collapse. 

Gundlach presented in a detailed work a self-similar spherical collapse of a spherically symmetric fluid. The 
solutions are determined numerically. 

Gupta solved Einstein's field equations for a pulsating fluid sphere, where the outer space is empty. Non-
uniform pressure is intended to prevent singular states. 

Hamadé and Steward reported a spherically symmetric collapse of a massless self-gravitating scalar field 
equation. The field either disperses to infinity or collapses into a black hole depending on the strength of the 
initial data. The problem is examined numerically. 

Harada studied the adiabatic conditions and the equation of state for a perfect fluid collapse. The relativistic 
hydrodynamic equations are solved numerically using a retarded time coordinate. 

Harada established a stability criterion for self-similar solutions of perfect fluids. He discussed the so-called 
'kink mode'. 

Harada examined the occurrence of singularities in general and referred to numerical methods. He 
highlighted the importance of self-similar solutions in a collapse. 

Harada. A wide class of perfect liquids of self-similar solutions is unstable with respect to the so-called kink-
mode. 

Harada and Maeda probed the convergence of a collapse of self-similar solutions to Einstein's field 
equations using numerical methods. The formation of black holes and singularities depends on the fine-
tuning of the initial data. 

Harada, Iguchi, and Nakao showed that collapse emits explosive radiation, creating a naked singularity. 

Harada, Iguchi, and Nakao studied the collapse of a spherical cloud of counter-rotating particles. A central 
singularity arises depending on the rotational moment of the rotating particles. 

Harada, Nakao, and Iguchi. The metric functions that describe a spherically symmetric model can be 
integrated explicitly. if the radial pressure of a model vanishes. The nakedness and curvature strength of the 
singularity was examined. 

Hawking and Penrose noted that singularities are to be expected when either the universe is spatially 
closed or an object is collapsing. It is assumed that large mass concentrations are inevitably unstable. 

Henrikson and Wesson found solutions for non-static dust clouds. For stiff equations of state, the solutions 
were solved numerically. 

Hernández et al. considered the development of self-gravitating spheres, assuming a static auxiliary 
solution. They explored the possibility of analytical and numerical solutions. Ultimately, they were limited to a 
post-static procedure. 

Hernández et al. treated the linking conditions for radiating spheres with heat flow. 

Hernandez, Núños, and Percoco found that under certain circumstances a spherically symmetric mass 
distribution can satisfy a non-local equation of state. The problem was solved numerically. 
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Hernandez and Misner studied inward-moving matter with respect to trapped surfaces using hydrodynamic 
methods. They used observer time coordinates, resulting in cross terms in the metric. 

Hernandez and Di Prisco presented a numerical model for a collapsing radiating sphere. Under certain 
physically reasonable conditions, the collapse can bounce. 

Hernandez and Di Prisco extended the Lemaître-Tolman-Bondi model for the dissipative case. Scalar 
functions appear in the orthogonal decomposition of the Riemann. 

Herrera considered a family of self-gravitating spheres, where the radial forces in individual regions of the 
spheres have different signs. This was explained by a local anisotropy of the fluid or by the emission of 
incoherent radiation. Einstein's field equations were calculated from a general central symmetric approach 
and then specialized to an anisotropic fluid with different radial and tangential pressures. Isotropic and 
unpolarized emission of energy density was envisaged. 

Herrera showed that a change in the Weyl tensor is necessary as a prerequisite for a spherically symmetric 
fluid to leave the state of equilibrium. 

Herrera, Martin, and Ospino studied anisotropic fluid spheres with a time-dependent lapse function. 
However, an analytical form of this is not given. 

Herrera and Santos described a dissipative gravitational collapse based on the Misner-Sharp approach. The 
notion of mass density always depends on the internal thermodynamic state. 

Herrera and Santos anticipated a non-comoving system, with the metric coefficients also being time-
dependent. They gave the solution to Einstein's field equations in a general form and brought the stress-

energy-momentum tensor into tetrad form. They assumed a radial velocity  v c  with which the object 

under consideration collapses very slowly. They transformed into the comoving system. They explored 
different definitions of energy for the interior of the object. 

Herrera and Santos investigated the properties of fluid spheres in which the area radius and the proper 
radius match. They called such stars Euclidean and showed that they cannot be static. They described their 
exterior field with the Vaidya metric. 

Herrera and Santos described in detail the local anisotropies of self-gravitating systems, also treating 
contracting models. 

Herrera and Santos studied a spherically symmetric solution with radial heat flow. They showed that a 
temperature gradient arises, which can be traced back to perturbations. 

Herrera and Santos described an anisotropic cylindrical collapse of a perfect fluid. The radial pressure does 
not vanish at the surface of the cylinder. 

Herrera, le Denmat, Santos, and Wang studied some general properties of a spherical shear-free collapse. 
They demanded conformal flatness and discussed the relation between dissipation and inhomogeneous 
density. 

Herrera et al. extended the Misner-Sharp approach to a collapse of the viscous dissipative case. They found 
that neutrino emission is necessary to overcome a star's binding energy to form a neutron star or black hole. 

Herrera et al.. A self-gravitating spherical fluid with anisotropic stresses has been studied. The connection to 
the Weyl tensor, shear, and anisotropic pressure was analyzed. 

Herrera et al. dealt with a collapse with inhomogeneous mass density. Parameters remain undetermined. 

Herrera et al. analyzed the heat conduction of a relativistic fluid when it leaves the hydrostatic equilibrium. 

Herrera et al.. Five scalar quantities, which are obtained by orthogonal decomposition of the Riemann, 
determine the development of self-gravitating spherically symmetric dissipative fluids with anisotropic 
stresses. 

Herrera, Di Prisco, and Ospino presented some analytical solutions for radiating collapsing spheres. 
Neutrino radiation creates a neutron star or black hole. 

Herrera, Di Prisco, and Ospino studied the stability of the shear-free condition using the evolution equation 
for a spherical-symmetric, anisotropic, viscous, dissipative fluid distribution. They started from a general 
metric and calculated the field quantities. 

Herrera, Di Prisco, and Fuenmayor found an expression for the active gravitational mass, the  -metric, 

after it has left hydrostatic equilibrium. Even small deviations from sphericity result in significant changes of 
the active mass. 
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Herrera and Di Prisco found the active gravitational mass of a relativistic, heat-conducting fluid after it has 
left hydrostatic equilibrium. 

Herrera and Di Prisco studied axisymmetric, shear-free, dissipative configurations. There is a connection 
between the magnetic part of the Weyl tensor and the vorticity. 

Herrera and Di Prisco performed a general study on the collapse of axisymmetric sources, in particular for 
anisotropic dissipative fluids. The problems were solved both analytically and numerically. 

Herrera, Jiménez, and Ruggieri found a general method to describe nonstatic, radiating fluid spheres. They 
used numerical methods to solve Einstein's field equations. 

Herrera, Dermat, and Santos studied the dynamic instability of a non-adiabatic spherical collapse with 
dissipation in the form of radial heat flow. 

Herrera and Martinez. Two relativistic models for collapsing spheres have been studied. The relaxation time 
determines the bounce or collapse of the sphere. 

Husain, Martinez, and Núñez found exact spherical-symmetric solutions, which can be interpreted as an 
inhomogeneous dynamic scalar field. They have black holes and white hole-like regions with trapped 
surfaces. 

Iben considered a quasi-static equilibrium of a massive star. As the internal temperature increases and the 
radius decreases, the binding energy first passes through positive values and then rapidly decreases to 
negative values. 

Israel presented an analytical completion of Vaidya's radiation metrics. An irreversible collapse into a point 
takes place. 

Israel conjectured that singularities do not form in an asymmetric collapse, or that collapse has oscillatory 
effects that prevent it from reaching the event horizon. 

Israel dealt extensively with cosmic censorship and naked singularities. 

Israel announced a confinement theorem that forbids the formation of naked singularities in a gravitational 
collapse. 

Ivanov. An effective anisotropic spherically symmetric heat flow fluid model can absorb the additives of two 
perfect fluids with anisotropy, heat flow, bulk and shear viscosity. In most cases, heat flow can be avoided 
more effectively. 

Ivanov gave a review of collapsing shear-free fluid spheres with heat flow. 

Ivanov treated shear-free anisotropic fluids, relying on two formulas for the mass function and involving a 
master potential. The models lead to equations with undetermined quantities. 

Jebsen. This work is an early attempt to find time-dependent, spherically symmetric solutions to Einstein's 
field equations. However, he showed that with such a general approach, the model again is reduced to a 
static one by a suitable choice of the time coordinate. 

Jhingan described the structure of a gravitational collapse of spherically symmetric dust using the Tolman-
Bondi-Lemaître metric. The formation of black holes and naked singularities depends on the initial dates. 

Jhingan and Kaushik studied the collapse for a Lemaître-Tolman-Bondi model. Under certain conditions, 
singularities are globally visible. 

Jhingan, Joshi, and Singh complement previous work on the importance of the initial density and velocity 
distribution in a spherical collapse. 

Jhingan, Dwivedi, and Brave studied whether energy can physically escape from the regions of naked 
singularity and reach a distant observer. 

Jhingan and Magli examined the Einstein-Strauss cluster for the collapsing case. The final state can be a 
black hole or a naked singularity. 

Joshi calculated the collapse in general terms in spherical coordinates and discussed recent developments 
in the formation of black holes and naked singularities. 

Joshi presented the problem of gravitational collapse in detail and dealt with the question of whether naked 
singularities can occur. 

Joshi et al. developed procedures to establish equilibrium configurations that arise at a final state of 
gravitational collapse with regular initial conditions. The collapsing fluid has only tangential pressure. The 
equilibrium geometries can either be regular or have a naked singularity at the center. 
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Joshi and Dwivedi studied naked singularities of an inhomogeneous collapse of a Bondi-Tolman dust cloud. 
Self-similar and non-self-similar cases were considered. Two unspecified functions remain. 

Joshi and Dwivedi showed that strongly curved naked singularities can occur in a self-similar gravitational 
collapse and the weak energy condition is satisfied. 

Joshi and Dwivedi described a continuous dust collapse. The final state of the collapse depends on the 
initial data. The free variables of the solution decide whether a black hole or a naked singularity is formed. 

Joshi and Goswami. Initial conditions cause naked singularities or black holes as the final state of 
continuous gravitational collapse. 

Joshi and Goswami studied a gravitational collapse with negative pressure and weak energy condition. A 
trapped surface could be avoided. 

Joshi and Goswami found that the occurrence of singularities indicates the breakdown of Einstein's theory. 
They described a model that avoids singularities, with the entire mass of the stellar object being radiated 
away. 

Joshi and Goswami considered singularities and black hole paradoxes at classical and quantum levels. 
Problems could be solved by avoiding trapped surfaces in a continuous collapse. This is the case when the 
star radiates all of its mass. 

Joshi and Królak studied the naked singularities in the Szekeres model, which describes irrational dust and 
is a generalization of the TLB model. 

Joshi and Malafarina extended the Oppenheimer and Snyder model with small tangential stresses. This 
changes the final state of the collapse from a black hole to a naked singularity. 

Joshi and Malafarina extensively studied the formation of black holes and naked singularities in a 
gravitational collapse. 

Joshi and Singh. A spherical inhomogeneous collapse of a dust cloud, described by a Tolman-Bondi model, 
leads to either a black hole or a naked singularity, depending on the original density distribution. 

Joshi, Dadhich, and Maartens investigated the physical conditions under which a naked singularity is more 
likely to form than a black hole. Sufficiently strong shear effects near the singularity force the formation of an 
apparent horizon. 

Joshi and Dwivedi studied the structure and evolution of naked singularities in a self-similar collapse for an 
adiabatic fluid. Conditions were given as to whether the singularities were either locally or globally naked. 

Kanei described a collapse using the Painlevé-Gullstrand metric. He wanted to use the same coordinate 
system to describe the collapse inside and outside the event horizon. The star collapses in free fall from a 
certain position. The collapse speed conflicting with the special theory of relativity has the MTW structure. 

Karmakar investigated class one embeddings, where the metric coefficients can also be time-dependent. 

Kriele discussed the initial value problem of a spherically symmetric star with a general equation of state. 

Knutsen studied nonstatic spheres with pressure gradients. He concluded that pressure-free models are 
unphysical and that singularities should be surrounded by a trapped surface. 

Knutsen claimed that there must be at least two horizons for a sphere of fluid, the Schwarzschild horizon 
and the apparent horizon inside matter. 

Knutsen found a solution for a spherically symmetric fluid in non-comoving coordinates. It contains shear, 
pressure, and the density which is positive within the fluid. The speed of sound is less than the speed of light 
and decreases towards the outside. 

Knutsen found a singularity-free model for a spherically symmetric nonstatic fluid with uniform density but 
nonuniform pressure. 

Kolassis, Santos, and Tsoubelis considered a spherical fluid with heat flow radiating zero fluid into the 
outer region described by the Vaidya metric. They gave a Friedman-like exact solution of Einstein's field 
equations for the interior, which describes a physically usable collapse. 

Kramer describes a collapse with radial heat conduction. The Vaidya radiation field is used as an exterior 
solution. The motion of the boundary is derived from the linking condition. 

Krori and Borgohain extended the results of other authors with regard to non-static solutions of Einstein's 
field equations for radiating spheres. They received contracting and bouncing models. 

Kuchowicz studied very general relativistic fluid spheres, also making an ansatz with time-dependent metric 
coefficients. However, the parameters of the model remained undetermined. 
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Kurita and Nakao studied a collapse of a 0-dust with cylindrical symmetry. Naked singularities are created 
along the axis of symmetry, with the 0-dust being emitted again from the naked singularities. 

Kuroda studied naked singularities in the Vaidya model in a spherical collapse of pure radiation. 

Lake and Hellaby showed that a radiating Oppenheimer-Snyder model can have naked singularities. 

Lake and Hellaby. A reply. 

Lake described the influence of the cosmological constants on the collapse of a spherically symmetric 
inhomogeneous dust sphere. 

Lake. General conditions for the formation of naked singularities in a spherical collapse have been derived. 
He claimed that naked singularities do not violate the spirit of cosmic censorship. 

Lake set up the equations of motion of thin timelike shells using embedding theory. 

Lake examined two possible types of singularities in the Tolman model. 

Lake examined the possibility of naked singularities in a non-self-similar collapse. 

Landau studied the stability of stars. He objected to attributing properties to stars just to simplify the 
mathematical treatment. 

Lapiedra and Moralis-LLadosa analyzed pressure-free, inhomogeneous matter with spherical symmetry 
and a spatial foliation of comoving 3-spaces. The solution has two arbitrary functions of the radial coordinate, 
which are determined with the Lichnerowicz linking condition to the exterior Schwarzschild solution. 

Laserra treated a pressure-free spherical system. In particular, the initial conditions for the evolution of a 
system over time. 

Lasky, Lun, and Burston considered spherical dust and showed, with a [3+1] decomposition, that the metric 
coefficients are completely determined by the matter distribution. Shell-crossing singularities are 
investigated. 

Leibowitz presented time-dependent spatially symmetric solutions. A class indicates that a condensation or 
evaporation process is taking place on the object's surface. 

Leibowitz and Israel addressed the question of what is the maximum amount of energy that can be radiated 
from a collapsing star. 

Lemos showed that naked singularities formed in a spherical gravitational collapse with radiation are the 
same as those formed in a matter collapse. 

Lemos. A gravitational collapse in the AdS background was studied. Massless singularities arise for a highly 
inhomogeneous collapse. Toroidal, cylindrical, and planar collapse can be treated together. 

Letelier and Wang described the collision and interaction of cylindrically symmetrical fluids. Analytical 
solutions lead to naked singularities. 

Lim and Zhang inspected a dust shell or two collapsing onto an existing black hole. The interior of the shells 
is time-dependent. The flow of time slows down during the collapse. 

Lin, Mostel, and Shu investigated a collapse of a uniform, non-rotating, pressure-free spheroid. The initial 
eccentricity increases steadily due to the anisotropic gravitational field. An initially oblate spheroid tends to be 
a disc, and a prolate one to be a spindle. The problem was treated numerically. 

Lynden-Bell and Bičák found some inhomogeneous solutions with increasing condensation and black 
holes. 

Maeda published a higher dimensional gravitational collapse with perturbation effects from quantum gravity. 

Madhav, Goswami, and Joshi studied a collapse of a tangential pressure cloud of matter in the presence of 
the cosmological constants. They examined how   modifies the dynamics of collapse and whether it has an 
influence on cosmic censorship. 

Magli studied anisotropic elastic spheres whose dynamics are supported only by tangential stresses. The 
solutions contain three arbitrary parameters that have been related to the distribution of mass and energy, 
and elastic internal energy. 

Magli analyzed the internal dynamics of a spherically symmetric star made of elastic material. The charged 
case was also treated. 

Magli dealt with an exact solution describing the dynamics of an elastic anisotropic sphere. The presence of 
tangential stresses cannot make visible a dust singularity. 
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Maharaj and Govender studied a dissipative collapse of a magneto-dynamic fluid with heat flow and shear. 

Maharaj and Govender referred to Kramer's radiating star. Einstein's field equations are supplemented by a 
further differential equation. 

Maharaj, Govender, and Govender studied the behavior of a radiating star surrounded by a Vaidya field. 
The external stress-energy momentum tensor is a superposition of a zero fluid and a string fluid. 

Mahajan and Joshi studied a spherical collapse with zero radial pressure but tangential pressure. Either a 
black hole is formed or the star disperses. 

Malafarina and Joshi studied the formation of black holes and naked singularities considering 
thermodynamic effects. 

Malafarina and Joshi used a general formalism to describe a spherical collapse in which the radial pressure 
vanishes but the tangential pressure does not. A black hole can pass over to a naked singularity. 

Marshall modified the metric by Oppenheimer and Snyder in such a way that no trapped surfaces occur. 

Mansouri claimed that no spherically symmetric solution of Einstein's field equations describes a uniform 

collapse of a fluid sphere and that satisfies the equation of state  
0

p p  except for the trivial case p 0 . 

Martinéz introduced a method to study thermal conduction and viscous processes in a collapse. Two partial 
differential equation systems have to be solved; Einstein's field equations and the Maxwell-Cattaneo 
transport equation. 

Martinéz, Pavón, and Núñez treated the evolution of an anisotropic radiating shell with zero stress. The 
increase in anisotropy makes it possible to divide the interior of the sphere into three concentric zones that 
differ in the amount of interactions between matter and radiation. 

Markovic and Shapiro studied the effect of a positive cosmological constant on a spherical collapse to a 
black hole. They considered several solutions and followed the model of Oppenheimer and Snyder. 

Mashhoon and Partovi made a very extensive study on spatially isotropic solutions to the Einstein-Maxwell 
equations considering an equation of state that relates pressure and matter density. Analogies to Newton's 
theory were made. 

Mashhoon and Partovi described the collapse or expansion of a charged perfect fluid. Collapsing models 
can be interpreted as a charged fluid surrounding a black hole. The singular region in matter is either 
spacelike or null. 

May and White found numerical solutions for models with simplified equations of state using computer 
technology. They described a state of stellar material in a late phase of collapse. This is triggered by the 
gravitational field and the pressure of the matter. 

Mena gave an overview of the collapse of cylindrical-symmetric black hole models. 

Mena, Natário, and Death connected a collapsing inhomogeneous and spatially homogeneous but 
anisotropic solution to an exterior static solution with negative cosmological constants and planar or 
hyperbolic metrics. 

Mena and Tavacol studied the initial data for an inhomogeneous spherical dust collapse that can lead to a 
black hole or a naked singularity. For naked singularities, the initial data must be centrally homogeneous. 
The authors start with an LTB model. 

Mena and Nolan. Necessary conditions for the existence of naked holes have been derived. Geodesics 
starting from a singularity have been described. 

Mena and Oliveira studied the linking conditions between FLRW and generalized Vaidya models with 
spherical, planar, and hyperbolic geometry. They found new models with negative cosmological constant and 
electromagnetic radiation. 

Michael referred to a work by Hoyle and Fowler studying strong sources of radiation. They found that the 
energetic destruction of a star is also possible without being triggered by rotation. The hydrostatic equilibrium 
is disturbed by a neutrino loss and leads to quasi-homologous contraction. 

Miller considered a quasi-stationary collapse of a class of slowly rotating non-homogeneous bodies and 
compared it with the results for non-rotating bodies. 

Mimoso, Le Delliou, and Mena studied a spherically symmetric model of an anisotropic fluid with expanding 
and collapsing regions. They used a [3+1] decomposition. 

Misner and Sharp considered matter with a stress-energy-momentum tensor of an ideal fluid. They 
generalized the Oppenheimer-Volkhoff equation for hydrostatic equilibrium by including an acceleration term 
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and a contribution to the effective mass of a shell of matter that comes from its kinetic energy. For the time-
dependent case, this gives the change in the total energy of each fluid sphere. It arises from the work done 
on this sphere by the surrounding fluid. The fluid is under pressure and therefore, does not collapse in free 
fall. The collapsing system was adapted to the exterior Schwarzschild solution. 

Misner studied the dynamic equations of a self-gravitating shell of an ideal fluid with heat transfer. The 
internal energy is converted into neutron flux. 

Misra and Srivastava studied an adiabatic collapse of a uniform density sphere, both neutral and charged. 
There are inconsistencies in the charged case. 

Misra and Srivastava studied the non-static Einstein-Maxwell equations with incoherent matter as a source. 
the role of electrical forces during a spherically symmetric collapse was discussed. 

Misthry, Maharaj, and Leach studied the collapse of a radiating star for the case that the Weyl tensor 
vanishes. Non-linearities are assumed at the boundary. Numerous non-linear solutions, which also included 
heat flow, could be given. 

Mitra showed that a gravitational collapse must be accompanied by the emission of radiating energy, 
independent of certain properties of the collapse. 

Mitra pointed out that astrophysical considerations rule out a continuous collapse into a black hole. Rather, 
an ECO (Eternally Collapsing Object) is created. 

Mitra showed that no trapped surfaces can arise in a relativistic collapse, although this result does not 
depend on the equation of state or other details. 

Mitra proved that trapped surfaces are not possible in a gravitational collapse. He also used Kruskal 
coordinates and Lemaître coordinates to substantiate his point. 

Mitra found that the pressure inside the star plays a more important role than is generally assumed. It can 
prevent trapped surfaces. 

Mitra compared a continuous collapse resulting in infinite space curvature where the collapse speed 
exceeds the speed of light with an eternally collapsing object (ECO) where the collapse speed is always

v c . 

Mitra proved that for a non-static, adiabatically evolving sphere, a homogeneous density also requires an 
isotropic homogeneous pressure. 

Miyamoto, Jhingan, and Harada investigated the weak cosmic censorship in a gravitational collapse within 
the framework of the LTB solution with regard to astrophysical applications. 

Morgan described the radial implosion along one axis of an axisymmetric model. In the null-fluid 
approximation, the metric is regular everywhere. 

Musco, Miller, and Polnarev numerically calculated the formation of black holes using the perturbation 
method. 

Müller zum Hagen et al. studied naked singularities, borrowing from Misner and Sharp's equations for 
perfect fluids. 

Müller and Schäfer studied the fate of matter falling into a black hole, reducing matter to a thin spherical 
shell. 

Naidu, Govender, and Govinder studied the causal temperature profile of a radiating star undergoing 
dissipative gravitational collapse without forming a horizon. 

Naidu and Govender studied the effects of pressure anisotropy and heat dissipation of a radiating collapsing 
star. The exterior solution is in Vaidya form. Darmois' relations were used for the linking condition. 

Nakao extended the Oppenheimer-Snyder model with the cosmological constant. The interior then 
corresponds to the closed FRW model, the exterior to the Schwarzschild-de Sitter model. 

Nakao and Morisawa studied the collapse of a cylindrical perfect fluid. The collapse speed was assumed to 
be large and the problem was treated approximately. 

Nakao, Harada, Kurita, and Morisawa studied the implosion of a dust cylinder. The result is not a cylindrical 
black hole, but a naked singularity. 

Nariai studied a simple collapsing model with a pressure gradient but no energy flow. The model is regular 
everywhere, internal events can be perceived by external observers. 

Nariai. The problem of the linking condition was investigated anew in a further paper. 
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Nariai and Tomita [considered the collapse of a star with uniform density and negligible pressure. Neutron 
emission takes place uniformly inside the star. The model builds on the theory of Oppenheimer and Snyder. 

Nariai and Tomita found a new exterior solution for the model of Oppenheimer and Snyder. This is 
singularity-free and was adapted to the interior OS solution using the method of O'Brien and Synge. 

Nariai and Tomita found a system consisting of an interior and exterior solution connected by the O'Brien-
Synge linking condition. They can describe a collapse or an anti-collapse. 

Narlikar and Vaidya analyzed Walker's isotropy conditions and extended them for the case 14T 0 . They do 

not give time to a physical application. 

Narlikar briefly described a spherical nonstatic solution with an electromagnetic field. The mass is position 
and time-dependent. 

Narlikar and Vaidya found a spherical nonstatic electrovac solution. 

Nogueira and Chan studied a collapsing radiating star with shear and bulk viscosity and emission. At the 
beginning of the collapse, the pressure is isotropic, but becomes isotropic as a consequence of the viscosity. 

Nolan keeps an eye on the McVittie solution with a time-dependent mass density approach but extends his 

investigations to a tachyonic fluid in the region r 2M . 

Nolan found the gravitational collapse of an asymptotically flat cylinder and prolate dust shells admitting 
naked singularities. 

Nolan and Mena found further results concerning singularities that arise when inhomogeneous dust 
collapses. They studied geodesics emanating from the singularities. 

Novikov. For a collapse below the event horizon, the collapse can become an expansion by changing to the 
procedure used with a charged sphere. 

Ohashi and Shiromizu studied a spherical collapse of an inhomogeneous dust cloud in Lovelock’s theory. 

Ohashi and Shiromizu studied a spherical collapse of a charged inhomogeneous dust cloud in Lovelock’s 
theory. 

Oliveira, Kolassis, and Santos extended an earlier model of a collapsing radiating star without assuming 
any special initial condition. 

Oppenheimer and Volkhoff developed a model for a neutron star. At the end of their work, they express the 
hope that a solution to a collapse can be found that will slow down over time so that a quasi-stable state can 
be reached. This problem has been solved by our collapsing interior Schwarzschild solution model. 

Ori and Piran presented a general relativistic solution for a self-similar collapse of an adiabatic perfect fluid. 
They dealt with cosmic censorship and naked singularities. 

Ori and Piran studied self-similar solutions for a spherical gravitational collapse of a perfect fluid with a 
barotropic equation of state. This creates naked singularities. They solved Einstein's field equations using 
numerical methods and calculated radial and non-radial geodesics. 

Pant and Tewari considered time-dependent spheres consisting of a perfect fluid with emission of matter. 
The model has no horizon. 

Pant and Tewari presented a conformally planar metric describing a symmetric distribution of matter with 
radiated energy in the form of photons and neutrinos. 

Pant, Mehta, and Tewari presented a new class of non-singular solutions representing time-dependent 
spherical perfect fluids with matter radiation. The class is useful for the interior of a quasar and is connected 
to the Vaidya metric. Some variables remain undetermined. 

Penna described the collapse of a pressure-free shell onto a pre-existing black hole, where an observer at 
infinity never experiences the shell or the event horizon as penetrable. The shell seems to freeze outside the 
black hole. The inner and outer surface of the shell takes on a certain value late in the collapse. 

Penrose assumed that in a gravitational collapse the body collapses below the event horizon to form a 
singularity in finite time for a comoving observer. For an outside observer, the star is contracting infinitely 
slowly to the event horizon. He also found that deviations from spherical symmetry cannot prevent 
singularities. After contracting below the event horizon, a spacelike sphere resides in the void region around 
matter (trapped surface). 

Penrose claimed that an observer following a free-falling collapse reaches the event horizon after finite time. 
To support this view, he transforms the Schwarzschild line element into the Eddington-Finkelstein form. The 
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actual Schwarzschild singularity is said to be not at r 2M , but at r 0 . He illustrates his argument through 

light cones. 

Penrose discussed at length singularities and naked singularities and the validity of cosmic censorship. 

Pereira and Wang assumed two arbitrary cylindrical regions connected by a thin dynamic shell. The shell 
consists of counter-rotating particles that emit gravitational waves and massless particles as the shell 
expands or collapses. Depending on the angular momentum of the dust particles, a singularity is created on 
the axis of symmetry. 

Petrich, Shapiro, and Teukolsky studied the Oppenheimer-Snyder collapse in isotropic coordinates using 
the Arnowitt-Deser-Misner 3+1 formalism. The inner region is treated like the closed Friedman model, the 
outer region fills the Schwarzschild field. Open parameters are determined by the linking conditions of the 
regions. 

Pinheiro and Chan studied a radiating collapsing star using thermal viscosity and radial heat flow. The time-
dependent metric coefficients lead to a collapse of the system. 

Pinheiro and Chan studied the collapse of a charged body with outward radiation using the Vaidya-
Reissner-Nordstrom metric. The charge delays the formation of a black hole and could also prevent a 
collapse. 

Podurets prepared a system for numerical calculations involving particles within a variable radius. The mass 
of the stars is conserved. 

Rahman claimed that the region within the event horizon does not contain the matter responsible for the 
collapse. He justified his view with a topology change in the collapse. 

Rajah and Maharaj treated the collapse of a spherically symmetric fluid with heat flow. The governing 
equation is the Riccati equation. 

Roman and Bergmann. A singularity-free interior solution of a spherically symmetric cloud of matter was 
presented. 

Rao looked for the conditions for time-dependent solutions for which an embedding of class one is possible. 

Rao studied the collapse of a spherically symmetric fluid with spatial isotropy and uniform density. A 
singularity emerges. 

Raychaudhuri treated the dynamics of a charged dust distribution. When collapsed, the surrounding region 
may exhibit oscillatory properties. All treated static solutions have a singularity at the center. He was able to 
connect a static solution to a Schwarzschild field on one side and to a Reissner-Nordstrom field on the other 
side. 

Rein, Rendall, and Schaeffer used numerical methods to show how collisionless matter falls into a black 
hole. 

Rocha studied the collapse of rotating thin shells and made conclusions about cosmic censorship. Higher 
dimensions were also considered. 

Rosales et al. used a post-quasistatic approximation and an iterative method to search for the evolution of 
charged distributions. The electric charge creates anisotropy. The model was linked to an external Reissner-
Nordstrom-Vaidya solution. 

Santos studied the liking conditions for a shear-free isotropic fluid with radial heat flow and unpolarized 
radiation. He argued with the exterior curvature at the boundary and referred to the linking condition of 
Lichnerowicz and O'Brien-Synge. 

Santos continued to treat the radiative, viscous, collapsing fluid proposed by Lake. Equations of state 
significantly affect the final state of the collapse. 

Sarwe and Tikekar formulated relativistic equations governing a non-adiabatic shear-free collapse of a 
massive superdense star in the presence of dissipative forces. 

Schäfer and Goenner considered a spherically symmetric object that radiates its mass with constant 
luminosity. The body starts with infinite mass and radius and contracts to zero without forming an event 
horizon. 

Scheel and Thorne discussed the possibility of naked singularities in a lengthy paper on black holes. 

Shapiro and Teukolsky numerically explored the rotational effect on the collapse of a collisionless gas 
spheroid. The spheroid was originally oblate and consisted of the same number of co-rotating and counter-
rotating particles. If the spheroids are sufficiently compact, the singularities will be hidden in a black hole. If 
the spheroids are large enough, there is no apparent horizon. 
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Shapiro and Teukolsky presented computer code to describe the collapse of neutron stars and also black 
holes. 

Shapiro and Teukolsky showed that collision-free gas spheroids collapse into singularities. If the spheroids 
are sufficiently compact, black holes will form, and if they are sufficiently large, an apparent horizon. 
Numerical methods were used. 

Sharif and Ahmad studied the collapse of two cylindrical perfect fluids. The collapse takes place at high 
speed and is calculated approximately. Naked singularities can arise. 

Sharif and Abbas studied the collapse of a charged cylindrical fluid and discussed the physical properties. 

Sharif and Siddqa derived a collapse from a plane-symmetric charged Vaidya metric. The weak energy 
condition is always fulfilled for the collapsing fluid. Naked singularities emerge. This is a counterargument to 
the cosmic censorship hypothesis. 

Sharif and Siddqa studied the dynamics of a non-adiabatic flow of an electrically charged fluid. The linking 
conditions to the exterior Vaidya solution were derived. 

Sharif and Iqbal considered a spherically symmetric collapse with lapse function =1 and Israel's linking 
condition. The stress-energy-momentum tensor was set up using the external curvature. 

Sharif and Fatima assumed axial symmetry for the interior. The interior is matched to the charged exterior 
using Darmois' method. Matter dissipation takes place in the form of shear viscosity. The influence of the 
charges and the dissipative quantities on the cylindrical collapse were studied. 

Sharif and Bhatti considered a non-adiabatic flow of a fluid that has dissipation in the form of shear viscosity 
and electromagnetic field. 

Sharif and Abbas studied a collapse using the Misner-Sharp formalism. They referred to a non-viscous, 
anisotropic, charged fluid with heat flow and cylindrical symmetry. 

Sharif and Tahir studied the dynamics of a spherical star with anisotropic pressure, heat flow, shear-
viscosity, and radial 4-velocity. They found an evolution equation for the shears. 

Sharma et al. studied an axisymmetric star collapse with the emission of radiation in the AdS universe. The 
evolution of the star depends on the initial conditions of the originally static configuration. Either a black hole 
forms or the star evaporates all of its mass before reaching a singularity. 

Sharma, Mukherjee, and Maharaj found a simple scaling property for the mass-radius relation for cold 
compact stars. The model can be applied to stars with exotic matter or quark stars with parts of vacuum 
energy. 

Sharma and Tikekar compared the collapse of a star composed of perfectly homogeneous fluid to a star 
with imperfect fluid and anisotropic pressure. 

Sharma and Tikekar. A non-adiabatic collapse of a shear-free star with anisotropic stresses and radial heat 
flow was studied. When all of the mass is radiated away, a singularity is formed without an event horizon. 

Singh wrote a review article on gravitational collapse, black holes, and naked singularities. 

Singh and Pandey investigated the circumstances in which an embedding of class one is possible, whereby 
the metric coefficients can also be time-dependent. 

Singh and Joshi investigated how the initial density and the velocity distribution affect a collapse of a 
spherical dust cloud. Three free functions of a Bondi-Tolman metric are determined by the initial conditions. 
Either a black hole or a naked singularity is formed. 

Singh and Witten studied the gravitational collapse of a compact object where the radial pressure is 
approximately zero and the tangential pressure is related to the mass density via the equation of state. A 
space-like singularity is created. 

Smoller and Temple showed that under certain assumptions for the equation of state, black holes never 

arise as a solution to the Oppenheimer-Volkhoff equation. The pressure will be infinite before is r 0 . 

Som and Santos presented a conformal-plane solution of Einstein's field equations that expands. The time-
varying variables are not explicitly specified. 

Stephani found new collapsing/expanding solutions for perfect fluids. They contain arbitrary functions of time 
and one additional parameter. 

Sussman analyzed a wide variety of non-static spherical symmetric charged shear-free fluid configurations. 
He listed known solutions by other authors, along with the undetermined parameters of the solutions. 
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Sussman studied the formation of a black hole in the Friedmann universe, using the same coordinates for 

both regions. Comoving and Kruskal coordinates for the curvature parameters k 1  and k 0  were used. 

He continued the investigations in two follow-up works. 

Sussman examined in more detail the previously found and already known solutions, which can also be 
time-dependent. The question of regularity in the center and at the boundary was examined in more detail. 

Szekeres referred to the Oppenheimer-Snyder solution and criticized the discontinuity of the 1st derivatives 
of the metric at the boundary. He claimed to have found a coordinate system that covers both the interior and 
exterior of the solution and therefore avoids linking problems. These comoving coordinates have already 
been found by Lemaître and do not allow any new conclusions. 

Szekeres extended a spherical model to a quasi-spherical one. Depending on the initial condition, a black 
hole is hidden behind the event horizon or a naked singularity. 

Szekeres and Iyer studied a dust collapse that is more general than the class of all collapsing Tolman-Bondi 
models. The stress-energy-momentum tensor was calculated near the singularity, which can also be a naked 
one. 

Taub studied collapsing, expanding, and oscillating models. He found interior solutions, but they are rather 
unconcerned with the interior Schwarzschild solution. 

Terno draw information from the stress-energy momentum tensor near the apparent horizon about the 
collapse of a homogeneous model. Such a model cannot describe a black hole. 

Tewari and Charan found a class of exact solutions to Einstein's field equations for a spherically symmetric 
anisotropic collapsing fluid with heat flow. The interior solution is connected to the exterior Vaidya solution. 

Tewari and Charan presented a new model with dissipative energy without a horizon. The inner matter is 
shear-free, isotropic, and spherically symmetric. The interior solution is linked to the exterior Vaidya solution. 

Tewari and Charan found a class of exact solutions to Einstein's field equations for a spherically symmetric 
anisotropic collapsing fluid with radial heat flow. The interior solution is connected to the exterior Vaidya 
solution. The radius of mass is initially infinite and then contracts to a point without producing an event 
horizon. Since the model started collapsing from the infinite past and continued into the finite present, the 
model can be called an eternal collapse. 

Thirukkanesh, Rajah, and Maharaj proposed a collapsing solution in the most general form. They solved 
the problem with a Riccati-type differential equation, which they further specialized under certain 
assumptions. The remaining parameters should be chosen with a physical interpretation in mind. 

Thirukkanesh, Rajah, and Maharaj treated a radiating star with accelerated, expanding, and shearing 
matter. By integrating the linking condition, they obtained three new solutions. 

Thirukkanesh and Govender. The effect of charge on a sheared radiating sphere was studied. The linking 
condition to the exterior Vaidya-Reissner-Nordstrom solution leads to the time evolution equation at the 
boundary of the collapsing star. 

Thompson and Whitrow studied a gravitational collapse with nonzero pressure and time-dependent energy 
density. From the point of view of a comoving observer, the object continuously collapses to a point of 
infinitely high mass density. From the point of view of the non-comoving observer, the object contracts 
asymptotically towards the event horizon. They introduced a limiting condition for the time dependence of the 
metric coefficients, so that an analytical solution to Einstein's field equations is possible. They settled open 

parameters via approximations. In follow-up work, they considered the inner horizon r 2.25M . But they 

assumed that the object contracts to a zero volume at this location. 

Thompson and Whitrow set the radius of a spherically symmetrical body with a uniform mass density as a 
function of time. The equation of state at the center is arbitrary, but the equation of state at any other point is 
determined by that at the center. The approach is valid for collapsing, expanding, or pulsating models. 

Thorne discussed a non-singular collapse, e.g. of cylindrical objects, and is critical concerning black holes. 

Tikekar and Patel studied the dynamic equation of a non-adiabatic collapse in the presence of charge. 

Tomita and Nariai derived a model of an oscillating perfect fluid sphere with uniform density. 

Torres and Fayos. Due to quantum effects, a closed 3-horizon was found in a collapse. Hawking radiation is 
generated at this horizon, whereby total evaporation is possible. 

Unnikrishnan presented a physically motivated proof of cosmic censorship in the case of Tolman-Bondi 
pressureless dust collapse. 
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Unnikrishnan studied the dynamic collapse of an inhomogeneous dust and showed that the cosmic 
censorship is robust and counterexamples are untenable. 

Unruh contradicted Lake and Hellaby and showed that their model does not contradict cosmic strong 
censorship. 

Vaidya wrote down a metric describing a radiation field. The radiation is directed towards the center of the 
fluid. Their energy is taken from the cosmos. 

Vaidya studied collapsing radiating matter. Using two mathematical assumptions, he arrived at a model 
similar to the Oppenheimer and Snyder solution. Two functions remain open. However, they can be adjusted 
via the linking condition of the time-like metric coefficients. The second linking condition was not addressed. 

Veroni and da Silva were interested in the development of a fluid with heat flow, bulk viscosity and 
anisotropic pressure. Mass loss occurs during collapse. 

Vickers studied a charged interior solution with time dependent area coordinate. It is connected to the 
exterior Reissner-Nordstrom solution. The solution contains three arbitrary time-dependent functions. 

Villas da Rocha, and Wang studied a collapse in higher-dimensional spherical spaces. The collapse has 
continuous self-similarity. Black holes are created with zero mass. 

Volkhoff referred to the original Schwarzschild solution and mentioned the property that in this model the 
pressure can become infinite at a certain radius. He extended the model with a significantly more 
complicated expression for the pressure inside the object. 

Wagh et al. reported a spherically symmetric shear-free solution to Einstein's field equations with heat flow. 
The equation of state has barotropic form. Density, pressure, and heat flow decrease toward the surface of a 
star. 

Wagh considered a spherically symmetric Petrov-type D model with a hyperplane-normal radial homothetic 
Killing vector. He also considered a source-free electromagnetic field in this model. 

Wahlquist and Estabrook. Both collapse and explosion of a central body have been studied. Linking 
conditions under appropriate coordinates support the model. They used the interior and exterior 
Schwarzschild solution and the Oppenheimer and Snyder model. 

Waugh and Lake studied marginally bound self-similar Tolman spacetimes and black hole conditions. 

Wilson studied the dynamics of a collapsing star. The neutrino flux was calculated and it was determined 
whether the energy flow of the neutrinos can cause mass ejection. 

Wyman extensively studied non-static radially symmetric solutions of Einstein's field equations. Above all, he 
tried to find exact solutions. 

Yodzis et al. discussed the occurrence of naked singularities during dust cloud collapse. For this object, they 
faced an approach that differs significantly from the interior Schwarzschild solution. The radial variable and 
mass densities are time dependent. They mentioned that the linking condition to the exterior Schwarzschild 

solution is fulfilled, but they did not explain this. The pressure-free version with 
44

g 1  suggests that the 

collapse occurs in free fall. For a version with pressure, the lapse function is 1 . The collapse for this 
version is not in free fall. 

Zhang and Lake claimed that naked singularities of a radiating composite sphere arise. If the particles 
interact strongly, the final state immediately becomes singular. 

Zhang et al. investigated the possibility that Nature allows black holes. They envisaged a bounce, whereby 
afterward the collapse the model expands to infinity. 

Ziaie, Atazadeh, and Tavakoli studied a collapse for the Brans-Dicke theory with barotropic equation of 
state. The cosmic censorship conjecture is violated. The collapse rate and the Brans-Dicke scalar field 
determine the formation of a black hole or naked singularity. 

Ziaie, Atazadeh, and Rasouli studied a collapse with barotropic equation of state in f(R) theories of gravity. 
Under certain conditions naked singularities arise. 

Zhou et al. studied a spherically symmetric collapse of a dust cloud in 3rd order Lovelock gravity. They 
obtained three families of LTB-like solutions: hyperbolic, parabolic, and elliptical. Massive naked time-like 
singularities emerge. 
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