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1. PRELIMINARY REMARKS 

Many studies have been published in recent decades to ensure the phenomenon of 
the star collapse as part of Einstein's gravitational theory. The problem arose that 
Einstein's differential equation system is generally not sufficient to determine the 
necessary variables which describe the collapse. There are only a few approaches which 
are analytical solutions of Einstein's field equations and of which the integration constants 
correspond to physical quantities. With respect to physical requirements these approaches 
are very simplified. They describe stars consisting of pressureless dust. These are the 
models of Oppenheimer and Snyder and the ones of McVittie and Weinberg. Although 
these models have been well known for decades and widely quoted, they offer some 
surprising properties after a closer examination. We want to present some of them in 
summary form. 

2. PRESSURELESS MODELS 

 

McVittie [1] has treated a class of collapsing solutions which are intended to 
describe stellar objects which consist of incoherent dust with homogeneous density and 
are pressure-free. Since in this case the inner resistance against contraction is missing, 
the object cannot be static. It collapsed due to its own gravitational forces. 

A completely pressure-free star is not physically realistic. During a collapse the 
particles of a star finally come so close that at a sufficiently high density pressure can be 
expected. However, a pressure-free stellar object can approximately describe a dying star. 
If the thermonuclear processes are exhausted inside a star, the star gives way to its own 
gravitational attraction and collapses. The simplification to freedom of pressure just 
discussed has good practical reasons. The integration of Einstein's field equations without 
this condition leads to considerable difficulties, a useful analytical solution is hard to find. 

The class of McVittie consists of three models, described by the line element 

 2 2 2 2 2 2
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ds dr ' r ' d dt '

r '
1 k

 
 
    
 
  

K

R

. (2.1) 

Therein k is a parameter which can take on the values  k 1,0 1  .  t 'K K  is the scale 

factor, describing the time course of the contraction of the star and 2 2 2 2d d sin d       

the lateral part of the line element.  r ', , ,t '   are the comoving coordinates, the 

coordinates of an observer following the collapse. Later on, we will use the non-comoving 

coordinates  r, , ,t  . 
0R  is a constant which will have a geometric interpretation. 

Requirement for any non-rotating collapsing star should be that it is surrounded by a 
Schwarzschild field, the linking condition must be satisfied. 

 Since we want to describe the problems in a simple way as possible, we make use 
of the option to treat the models geometrically, ie to represent them as surfaces in a 
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higher-dimensional flat embedding space. Therefore it is immediately clear that the case 
with k 1   is a space with an imaginary curvature radius and cannot be connected to the 
Schwarzschild model with real curvature. The case k 1   has not been further treated in 
the literature. k 0  corresponds to the model of Oppenheimer and Snyder [2] and k 1  

was rediscovered by Weinberg [3] at a later time and was discussed by him in more detail. 
The two models have been studied by us in numerous papers and the results have been 
clearly summarized in [4]. In the following Sections we go into some peculiarities of these 
models. 

3. THE MODEL OF OPPENHEIMER AND SNYDER 

 

In 1939, Oppenheimer and Snyder presented a paper that is now known as that 
paper that gave rise to the theory of black holes, although the term 'black hole' was 
introduced much later. In addition, the approach of OS differs from today's methods to 
implement black holes. The OS model consists of a collapsing interior and an exterior 
solution, whereby the exterior part is the static Schwarzschild exterior solution which 
remains static due to the Birkhoff theorem, even if the field generating stellar object 
collapses. 

The OS model is based on an existing cosmological solution of Tolman [4], where 
OS have taken the hardly insightful notation of Tolman, which is brought by us into the 
common form of the literature 

   2 2 2 2 2 2A ds dr ' r ' d dt '     K   (3.1) 

The relation between the radial comoving coordinate r '  and the non-comoving r is 

  r r ', t ' K K K . (3.2) 

OS have explicitly given the quantity K . Since K  does not depend on r ' , one has for the 

coordinate transformation between the two systems r r '   K . In addition, OS have 

specified the relation between t '  and t . Thus, a matrix   can be compiled for the 

transformation between the two coordinate systems. Obviously, it is quite tedious to 
discover such a transformation. Probably for this reason, other authors did not specify 
such a coordinate transformation for their models, or the putting up of such a coordinate 
transformation has not been possible because the model does not have an analytical 
solution. Above all, the use of different coordinate systems has the only purpose to make 
calculations as simple as possible. The main advantage lies in the fact that such a 
coordinate transformation is accompanied by a Lorentz transformation which includes 
velocity parameters. If one has found such a Lorentz transformation, one has on hand the 
physical velocity of the collapse as well, if one refers to the velocity at the surface of the 
stellar object. 

From (3.2) and the complicated relation between t and t ' , which can be found in the 

paper of OS, we can calculate by redifferentiation the holonomic, but rather complicated 
transformation matrix 

 i i

k ' |k 'x    
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and thus, we are able to write down the line element in non-comoving coordinates 

   2 2 2 2 2 2 2

T
2

2

1
B ds dr r d a dit ,

r
1

      


R

  (3.3) 

Due to the similarity with static models, in particular with the Schwarzschild interior 
solution, the OS model can be interpreted geometrically. The spatial part of  (3.3) is the 
line element on a spherical cap of radius R . For the polar angle  of the spherical cap 

one has 

 r sin , 1 cos    R   (3.4) 

Thus, the tools for embedding into a higher-dimensional space are provided.  is 

simultaneously the angle of ascent of the tangent planes of the spherical cap and 

 
r

v sin    
R

  (3.5) 

is the velocity of the matter particles inside the star. As usual, we interpret the geometry of 
the spatial part of the exterior solution as Flamm's paraboloid. The radial curvature radius 
of it is easy to calculate and is twice the radius of the curvature of the spherical cap at the 
boundary surface of the two geometries. Thus  

 

3

gr

2M
R   (3.6) 

applies if is 
gr  the radial coordinate at the boundary surface. Inserting (3.6) into (3.5) we 

obtain the Schwarzschild values 

 g g

g

g

2M 1
v ,

r 2M
1

r

   



 . (3.7) 

The complicated assembled time-like metrical factor 
Ta  of OS, which we did not 

explicitly write down, matches the Schwarzschild value at the boundary surface as well. 
We have discussed details in our paper [5]. 

This result is based on the assumption that the interior OS geometric model is 
based on a spherical cap. We will directly derive these relations from the details provided 
by OS. Since one can read from the line elements (A) and (B) the 4-bein system one can 
construct a matrix 

 
m' km' i '

'in k
n

L e e    

which has the simple structure 

 1' 1' 4' 4'

1 4 1 4L , L i v, L i v, L         , (3.8) 
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but whose components  and v are still quite intricate. We recognize the transformation 

as a pseudo rotation in the local [1,4]-tangential planes. Physically interpreted, it is a 
Lorentz transformation which makes the connection between a static reference system 
and a comoving frame, both related to the interior of the star. 

If one has calculated the expressions (3.8) for the surface of the collapsing star, one 
has gained the physically relevant value for the collapse velocity of the star and the 

associated Lorentz factor. This again gives the values (3.7). Thus, 
gv  is the velocity of an 

object coming in free fall from infinity, and has reached the boundary surface of the 
geometries. This means that the surface of the star itself was at infinity at the beginning of 
the collapse. The star was infinitely large and collapses in free fall, whereby it is 
surrounded by a Schwarzschild field. 

We would have obtained the same result if we had examined the exterior solution of 
OS. By a simple gauge transformation of the radial coordinate one obtains from the OS-
line element the well-known line element for the free fall in the Schwarzschild field found 
by Lemaître [5]. 

We want to deepen the problem. We translate the expression given by OS for the 
mass density of the star with the help of the relations used by us and thus we obtain 

 0 2

3
 

R
  (3.9) 

the standard expression for the mass density, which is known from other models, in 
particular from the interior Schwarzschild solution. Having derived the form of R  from the 

geometry with (3.6), one gets from (3.9) 

 0 3

g

6M

r
    (3.10) 

For 
gr  , thus at the beginning of the collapse, the mass density is zero. The space 

which fills the star is infinitely large, but empty. 

It is assumed that the star can shrink to a point. According to (3.10) the mass 
density would be infinitely large at this location. The surface of the star is said to have 
crossed the event horizon. According to (3.6) there is 2MR . The cap of the sphere then 

is a hemisphere and adjoins the circle at the waist of Flamm's paraboloid. As it is evident 
from (3.7) the collapse velocity would have reached the velocity of light. A further shrinking 
of the star would destroy the geometric picture. All the known problems of the event 
horizon of Schwarzschild geometry will occur. 

The solution of Oppenheimer and Snyder is an analytical solution of Einstein's field 
equations, which equally describes the interior and the exterior of a stellar object. It fulfills 
all the formal requirements of a field theory based on the laws of general relativity. The 
above considerations suggest, however, that the surface of the object can only 
asymptotically approach the event horizon. The formation of a black hole is not possible 
from this point of view. We refer to the paper of Mitra [6] and his theory of ECOs and 
MECOs. Mitra [7] has shown that OS have made a mistake by the less significant factor of 

1 4  at the critical part of the respective calculation. In addition, the crucial variable has the 

wrong sign for penetrating the event horizon. 



 
6 

The physical usability of the model has been questioned. A pressure-free star which 
fills the vastness of the universe and has vanishing density at the beginning of the collapse 
and leaves an empty space with a Schwarzschild field during the collapse behind it, does 
not exist. 

4. THE MODEL OF WEINBERG 

 

In his textbook Weinberg presents a model for a collapsing star. Demanding 
spherical symmetry and choosing suitable initial conditions Weinberg obtains a collapsing 
interior solution which he adapts somewhat intricately to the exterior Schwarzschild 
solution. Since the solution is already known to us, we can write the metric in a form that 
allows us to represent the model clearly arranged: 

2 2 2 2 2 2 2 2 2

2

2

0

1
(A) ds dr ' r ' d r ' sin d dt '

r '
1

 
 
       
 
 

 

K

R

.  (4.1) 

In this model the surface of the star is located at the beginning of the collapse at a 
finite distance from the center of gravity. Formally, the process of shrinkage is formulated 
with the help of two velocities 

 
R I

0

r r '
v , v   

R R
 (4.2) 

and the associated Lorentz factors 
R  and 

I . Again the relation (3.2) is valid. As with the 

OS model  t 'R R  can be interpreted as the radius of a spherical cap. 
0R  is the initial 

value of R  and is a constant. One finds the relation 3

0R K R . 

   2 2 2 2 2 2 2 2 2

R T RB ds dr r d a dt , 1 1 r        R  (4.3) 

is the line element in the non-comoving system. Weinberg notes a complicated expression 

for 
Ta  which takes the well-known form of the surrounding Schwarzschild field on the 

surface of the star. 

t ' K  can be determined from the field equations. That is enough to set up 

together with (3.2) two necessary components of the transformation matrix  . By 
transvecting this matrix with the bein vectors of both systems one determines the Lorentz 
transformation which converts one reference system into one another. From it one reads 
the velocity of the particles inside the stellar object and the associated Lorentz factor 

 2 2 R
C I R I C

I

v v v ,


    


. (4.4) 
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Weinberg allows the star to shrink under the event horizon and to contract to a 
point. This needs further consideration. A light signal which is emitted radially from the 
surface of the collapsing star needs an infinitely long coordinate time to reach an observer 
if the surface coincides with the event horizon. This observer sees the star to collapse 
eternally, but below the event horizon the star cannot be observed by him. Due to the 
increasing redshift he sees the star fade slowly when the surface of the star approaches 
the event horizon. 

We consider this scenario described by Weinberg hardly realistic. On the one hand 
the star should collapse to a point with infinitely high mass density in a relatively short 
proper time, on the other hand this star should have a finite extent for an external observer 
for all time. In accordance with the principle of relativity, it is evident that two observers 
which are in different states of motion, have also different views about the chronological 
sequence. But the principle of relativity does not mean that an object can have two 
different mutually excluding states. We therefore assume an inconsistency in the model of 
Weinberg and we want to investigate this problem. 

For the line element in the Schwarzschild field one has 

 2 2 2 2 2 2 2ds dl dT dl' dT' dl'' dT''       , (4.5) 

whereby the expressions stand for a non-comoving system, a system coming in free fall 

from a finite position 
0r  and a system coming in free fall from infinity. T, T' and T'' are the 

associated proper times. The 4-dimensional distance ds between two adjacent points is an 
invariant, it has the same value for all three observers. This, of course, is not true for the 3-
dimensional distances and the time intervals. For the three observers is ds 0  and  

ds 0  is basically excluded due to the invariance of ds. ds 0  stands for null-lines, ie for 

observers who would move with velocity of light. However, in our opinion this assumption 
is absolutely incorrect for an observer who would have reached the event horizon. We 
conclude that the event horizon can be reached only asymptotically in the Schwarzschild 
field and that this must also apply to the surface of a collapsing star. 

The proper times are connected with the coordinate times via the metric factors 

 R R R RdT a dt, dT' 'a dt ', dT'' ''a dt '', a 1 2M r        .  

For an observer at rest is v 0  and the Lorentz factor is 1  . For a freely falling observer 

who comes from infinity is known to be v'' 2M r   and the Lorentz factor reads as 

 2

R'' 1 1 v '' 1 1 2M r 1 a      .  

Thus, one has 

 2

R RdT a dt, dT' 'a dt ', dT'' dt ', ' 1 1 v '         (4.6) 

The first term is the well-known expression for observers resting in the Schwarzschild field. 
The second term we have discussed in detail in [5] and we have set up a Lemaître 
transformation for this case as well. The third term shows that the proper time only 
coincides with the coordinate time if the observer comes from infinity. We owe Lemaître a 
detailed investigation for the last case. 
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With this we obtain from (4.5) 

 2 2 2 2 2 2 2 2 2 2

R Rds dl a dt dl' ' a dt ' dl'' dt ''      . (4.7) 

Relating the metric of Weinberg to the surface of the star, we obtain in our abbreviated 
notation 

 2 2 2ds dl' dT''  .  

This means that in the Weinberg line element two values are combined belonging to 
two different systems. dl'  belongs to an observer who falls off from a finite position, dT''  to 

an observer who comes from infinity. With this it is evident that with  (4.4) Einstein's law of 
velocity addition is violated and the Lorentz relations are destroyed, as well. Instead of  
(4.4) it should run as 

  R I
C C R I R I

R I

v v
v , 1 v v

1 v v


     


. (4.8) 

On the surface of the contracting star at the beginning of the collapse is 
g

I g 0 gv r ' 2M r '   R  a constant. If we write for this 
0v , for the associated constant 

Lorentz factor 
0 , and further 

g g 0r ' r r  , and if we simplify dl to the radial direction we get 

 c c R

dl
v , dl dr

dT '
    .  

If we integrate the relation 

 
 

R

C C 0 R 0

1
dT' dr dr

v v v


 
  

   

and if we replace the outgoing coordinate r by an incoming 
0r r  starting at 

0r  we obtain 

for the proper time T'  as a function of the distance from 
0r  a progress which confirms with 

T'(0) 0  and T'(2M)    that the surface of the star can only asymptotically approach 

the event horizon, if we comply with the laws of relativity. A plot of the function is shown in 
[5]. However, we are not aware of a collapsing model based on the relations (4.8). 

With a further consideration we want to ensure the view that no collapsing star may 
fall below the event horizon, but that a dying star aims at an ultra compact state, which is 
very similar to a black hole, but is an object that can geometrically be described. 

Since the exterior Schwarzschild solution has been proven and describes Nature 
well, one can assume that the interior solution can describe the interior of a star at least in 
a rough approximation. Although the two parameters, such as pressure and mass density 
are not sufficient to record the properties of a star, there is still hope that at least some 
basic properties of the model have general validity. 

The interior Schwarzschild solution has a pressure horizon. If one reduces the 
volume of the stellar object, the pressure in the center will be infinitely high from a certain 
aperture angle of the spherical cap which geometrically describes the interior solution. The 
interior solution has a further horizon. If one drills a hole through the star along a diameter 
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and letting fall an object through it, the object will oscillate through the star. Decreasing 
significantly the radius of the star the oscillating object would reach the velocity of light in 
the center of the star. This excludes a further reduction of the diameter of the star. We call 
this the velocity horizon [5]. It coincides with the pressure horizon. Unfortunately a 
collapsing version of the interior Schwarzschild solution is not known. But we can assume 
that at any given moment of the collapse the interior solution is a snapshot of the shrinking 
star. If we define the interior solution as a model for a contracting star then it basically 
follows from these properties that the star can only asymptotically contract to its inner 
horizon. However, this inner horizon lies higher on the Schwarzschild parabola than the 
event horizon. Thus, all the considerations about what could happen if the surface of a 
shrinking star or a falling observer is reaching the event horizon are superfluous. 
Therefore, if we assume the interior and exterior Schwarzschild solutions to describe 
Nature the formation of black holes is excluded. 

Let us take a look at the conservation law. For a simple model with pressure and 
mass density the stress-energy-momentum tensor has the simple form 

  mn mn 0 m nT pg p u u    , (4.9) 

whereby the primes on the indices are omitted for the comoving system. In this system 

one has  mu 0,0,0,1  and thus 
4T 0, 1,2,3


   . From n

||nT 0


  one obtains 

 
4 4

| 0 4
4|

p E 0, E e e
  


   . (4.10) 

Since one has 
4

4e 1  for the above-discussed models, it follows 
|p 0

 . From the 

view of the comoving observer the pressure is spatially constant or zero. The latter is the 
case for the OS model and the Weinberg model. If one prefers a model with nonconstant 

or nonvanishing pressure one has to have 
4

4e 1  and one has to take into account the 

structure of relations (4.6), especially the second expression. 

Reinvestigating two classical models we have demonstrated the difficulties that 
prevent the implementation of a physically relevant structure. If one wants to derive a 
model which takes into account the pressure inside, one has to fulfill some formal 
conditions. The timelike metric factor must be a function of the radial coordinate. Between 
the coordinate systems of comoving and non-comoving observers must mediate a 
Lemaître transformation, between the reference systems a Lorentz transformation, 
whereby Einstein's law of velocity addition must be considered. Moreover, descriptive 
geometric methods can be useful for the realization of these intentions. 
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