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Abstract: A recently found interior for the Kerr metric is re-investigated by means of 
geometrical methods.  A surface with nonholonomicity is matched to the surface of the 
exterior solution. 

 

Contents 

 

1. Introduction ................................................................. 2 
2. The space-like geometry ............................................. 2 
3. The time surface ......................................................... 6 
4. More on the geometry ................................................. 7 
5. Outlook ..................................................................... 10 
6. References................................................................ 10 
 

 

 

 

                                            
*
 e-mail: arg@aon.at, home page http://arg.or.at/ 

http://arg.or.at/


 2 

1. INTRODUCTION 

 

In a former paper [1] we have proposed a solution for a Kerr interior based on a 
differentially rotating fluid source.  In the present paper we explain this solution by 
geometrical means. In Sec. 2 we choose for the [r, ]-slice of the space-like part of the 

metric a surface of ellipsoidal shape embedded in a flat space with an extra dimension. 
This surface matches the surface of the exterior solution (ES), which have we investigated 
in an earlier paper [2]. The [r, ]-slice will not be discussed as it can be obtained in the 

same way as the [ r, ]-slice by reducing the surface of an elliptical shape to that of a 

spherical one. To include also the time surface five dimensions but six variables and more 
algebra is needed. This is performed in Sec. 3. 

 

2. THE SPACE-LIKE GEOMETRY 

 

In this Section we investigate the geometrical structure of the space-like part of the 
Kerr interior. It is sufficient to consider the [ r, ]-slice as the [r, ]-slice has a similar, even 

simpler, structure. The [r, ]-slice of the complete Schwarzschild solution is made up of 

Flamm’s paraboloid (a fourth-order surface) and of the cap of a sphere for the interior, 
covering the ‘hole’ of the ES.  As we have found for the [r, ]-slice of the ES an elliptically 

squashed surface [2] which reduces to Flamm’s paraboloid by setting the rotational 
parameter to zero, we expect that the interior surface should reduce to a cap of a sphere 
for the Schwarzschild case. Since the parallels of the ES are ellipses, we demand the 
parallels of the interior to be elliptical too. Thus, we try a cap of an elliptically squashed 
surface for the [ r, ]-slice and a cap of a sphere for the [ r, ]-slice embedded in a flat 

space with the extra dimension x0’. We can use the elliptic-hyperbolical Boyer-Lindquist co-
ordinate system for both solutions as well.  The 3-surface is parametrized by 
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where R is a constant and the primed indices refer to a Cartesian co-ordinate system in 

the flat embedding space and 
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The horizontals of the surface are confocal ellipses with the minor semi-axes r and the 
major semi-axes A, where a is the common eccentricity of the ellipses. (2.1) can be written 
as 
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The lower half of the resulting surface is shown in Fig. 1.  

x y z( )

 

Fig. 1 

R has the meaning of the radius of a circle at the minor semi-axes of the horizontal 

ellipses. For the space-like part of the Kerr interior we will take a cap of this surface and 
match it to the ES. Differentiating (2.1) we obtain for the space-like line element of the 
surface 

 2 2 2 2 2 2 2 2 2 2

Rds tan a cos d d d          R  (2.4) 

with 
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As 

 
R Rdr cos d , 1/a    R  (2.6) 

we obtain the radial part of the line element  
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 2 2

R R1 tan a dr    

whereas 
Ra dr is the line element of the BL hyperbolae defined by =const. in the flat zero-

plane 0'x 0 . Defining the slope of the radial curves on the surface as 

 
Rtan (r, )tan      (2.7) 

we get 
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 , 

where the unprimed indices refer to the local reference system, 1dx  being tangent to the 

surface. Finally we get 

 2 2 2 2 2 2 2

R2

1
ds a dr d d

cos
    


 . (2.8) 

Evidently, the metric (2.8) is not the metric we have proposed in our previous paper and 
the metric does not match the ES. The cause is the following: transporting the normal 

vector of this surface from the minor semi-axes of the elliptical horizontals around the 0'x - 
axis, this vector will cyclically move up and down because the slope of the surface 
depends on  , as can be seen from (2.7). From a new rigging vector we demand the off-

axis angle to remain constant on its way around. The hyperplanes normal to this vector are 
anholonomic and the world we are living in is the family of all these hyperplanes. From 
(2.1) and (2.6) we get  

 0'

holonomic R 2 2

r
dx tan dr tan a dr, tan

r
       

R
 (2.9) 

and we define the non-integrable function 

 

0'

anholonomic Rdx tan a (r, )dr     .    (2.10) 

Suppressing the other dimensions, we have the flat radial line element in BL co-ordinates 
1'

Rdx a dr and obtain the anholonomic radial line element by 

 
2 20' 1' 2 2 2 2

R R22

2

1 1
dx dx a dr a dr

rcos
1

  



R

 . (2.11) 



 5 

We remark that the holonomic radial line element and the anholonomic radial line element 

have the same projections 1'

Rdx a dr on the zero-plane.  

We select the lower part 0' 2 2

holonomicx r  R of the surface and  we fix its center by 

addition of a constant in a suitable way for a proper matching. If this matching excludes the 
ergosphere we obtain a complete solution for a rotating object avoiding all singularities 
except the singularity at the rim of a disk in the equatorial plane for r = 0.  The boundary 

value 
g is the aperture angle of the cap and 

gtan the slope of the cap at the minor semi-

axes of the horizontals. Fig. 2 shows the matching region of the interior and exterior 
surfaces. 

Now we adjust the sign of η, so that the orientation is cw. Then 
g coincides with 

g , 

the angle of ascent of the exterior surface and the interior metric matches the exterior one 
at the boundary surface. This has the advantage that we do not need to correct the signs 
of the physical quantities. Thus we get for the IS and ES with 

 S

r r 2M
sin , sin v

A r
      

R
 (2.12) 

a negative value  for the velocity vS of a freely falling observer (also free from dragging 
effects) and a negative value for the attractive force of gravity.   

 

interior and exterior surface

x2 y2 z2( ) x y z( )

 

Fig. 2 
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3. THE TIME SURFACE 

 

In previous papers [3-6] we have shown that it is possible to embed the exterior 
Schwarzschild solution and the Kerr solution in a five dimensional flat space, if we use six 
variables without violating the theorems of Kasner and Eisenhart. This has been 
established by using the theory of double surfaces developed in these papers. With the 
help of this method we have explained the geometrical background of the Schwarzschild 
interior solution and we will proceed in the same way to investigate the Kerr interior metric.  
We start with the static seed metric investigated in the previous paper. For the explanation 
of the time-like part of the metric the curvature of the radial lines play an important role: We 
move the radial curvature vector of the ES from infinity towards the stellar object. While the 
tip of this vector moves on a radial integral line of the exterior surface the tail moves on the 
correlated evolute. As soon as the tip has reached the boundary surface the tail is held on 
the evolute and the tip is moved on the interior surface towards the axis of rotation. This 
new vector we call X and ε its negative off-axis angle with respect to x0’ . At the boundary 
surface X coincides with the curvature vector ρg of the radial lines of the ES. If we prolong 
ρg to x0’ the straight line through ρg cuts off a distance 

 
g R R  . (3.1) 

The components of the vector X with respect to the Cartesian co-ordinate system of 
the embedding space are 
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g
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R R
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We introduce an additional dimension with the co-ordinate axis x4’ and we define the time 
as the rotation of the projection of the vector X onto the [x0’,x4’]-plane through the 
imaginary angle iψ: 

 4

gdx Xcos di cos cos di         R R . (3.3) 

Since the value of the curvature vector of the exterior curve at the minor semi-axis is 
known from previous investigations [5] as 
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we have at the boundary 
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and with (2.12) 

 2

g g2  R  . (3.6) 

Defining the co-ordinate time as 
gdt d    we obtain with (3.1) and (3.3) the physical time 

in the local tetrad system 

  4 2 2

g g g

1
dx 1 2 cos cos idt

2

       
 

 (3.7) 

and the seed metric of the previous paper. The transformation to the rotating metric is 

straight forward. For the Schwarzschild case we obtain 
g 1   and 

 4

g g

1
dx 3cos cos idt 3 cos cos di

2
              R R  (3.8) 

elucidating that the curvature vector of the Schwarzschild parabola at the boundary is 

g 2  R  and 
g 3  R = R R , which is a fundamental property of the parabola.  

 

4. MORE ON THE GEOMETRY 

 

In the last section we have envisaged the vector X in the [xo’, x1’]-plane only. 
Extended to more dimensions we can read off from 
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 (4.1) 

that X satisfies the equation of a pseudo-hypersphere with radius X 

 a' 2

a'X X X  (4.2) 

embedded in a five-dimensional flat space with Cartesian co-ordinates  a' 0',1',...,4' . 

The sphere (4.1) provides the basic framework for several solutions of the Einstein field 
equations with spherical and also axial symmetry. To specify such a model, the sphere has 
to be deformed to another more complicated surface. This is easily done by projectors 
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expanding the center of the sphere to a curve, which is the locus of the centers of 
curvatures of another curve. The latter is expanded from a great circle of the sphere. 
These two correlated curves (evolvente and evolute) are rotated through the above-
mentioned angles and constitute a double surface embedded in a five-dimensional flat 
space [3-6]. By the introduction of a second surface into the theory we can do with five 
dimensions only for the embedding space for vacuum solutions without contradicting the 
theorem of Kasner and Eisenhart.  The evolute provides a hidden variable and our theory 
is based on five dimensions but six variables. A dimensional reduction cuts off all that we 
do not need for the four-dimensional representation of the model. 

  From (4.1) we can easily derive the transformation matrix to pseudo-spherical co-

ordinates  a 0,1,...,4 with the co-ordinate labels  X, , , ,    .   is the off-axis angle of 

the curvature vectors of the BL-ellipses and 

r A
sin sin , cos cos     

 
. 

With the help of (3.2) we get 
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 , (4.3) 

which is the ansatz for a double-surface theory.  The second column on the right side gives 
raise to the line element  

 2 2 2 2 2 2 2 2 2 2 2 2 2 2ds d d sin d sin sin d cos di           R + R R R R  (4.4) 

which is the line element of a pseudo-sphere for const.R  

We do not care for the question, if the extra dimension has a physical reality. We use 
the five-dimensional ansatz as a tool for finding or explaining gravitational models. Our 
proposed Kerr interior results from those techniques. From (4.3) we could derive the field 
equations of the seed metric but we do not repeat all that we have already done to 
investigate the two Schwarzschild models and the Kerr exterior model.  The interested 
reader is referred to  papers [3-6]. We only give a short review how to gain the interior Kerr 
geometry from the pseudo-spheres.  The projectors P operate on the fundamental 

quantities of the geometry: 

 b b b a c d c

a a a ab a dbb
, d dx , Y


  


P R = P P R

R
 (4.5) 

where the c

dbR are the connexion coefficients of the metric (4.4), the c

abY  are the 

connexion coefficients of the Kerr interior surface, and 
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  ad d d , sin d , sin sin d , cos di         R R, R R R R  (4.6) 

are the spherical co-ordinate differentials. The projected surface we call the physical 
surface. The components of the projectors are 
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From the Riemann tensor in the five-dimensional flat embedding space 
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we get by projection  
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the Riemann of the physical surface. Shifting all components with 0-indices to the right we 
obtain on the left the Riemann for the seed metric. Contracting to the Ricci we can 
construct on the right side of the Einstein field equations the stress-energy tensor, 
consisting mainly of the generalized second fundamental forms of the surface 
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At the end, we obtain the components of the covariantly conserved stress-energy 
tensor listed in the preceding paper. How to gain the field equations and the stress-energy 
tensor for the rotating interior metric has been treated in this paper in full length.
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5. OUTLOOK 

 

In the last Section we have briefly outlined the possibility to formulate the interior Kerr 
model in terms of five-dimensional differential geometry. We expect the equations for the 
curvatures to decouple from the Einstein field equations and the equations for the 
dynamical quantities to take a simpler structure. We hope to publish this elsewhere. 
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