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Abstract: An exact solution of the Einstein field equations is proposed which represents a 
differentially rotating fluid. As this solution matches the exterior Kerr solution and reduces 
to the Schwarzschild interior solution by setting the rotational parameter to zero, it could 
serve as Kerr interior. 
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1. INTRODUCTION 

 

In the last decades many searchers have dealt with the construction of a solution of 
the Einstein field equations for a rotating source that matches the Kerr solution. 
Approximate solutions and trial solutions have been found [1-22]. We want to propose 
another solution by means of geometrical methods. 

In Sec. 2 of this paper we present an interior for the Kerr metric based on a 
differentially rotating fluid source. This exact solution of the Einstein field equations 
matches the Kerr vacuum solution at a boundary surface of an elliptical shape. Setting the 
rotational parameter to zero it has as static limit the Schwarzschild interior solution.  In 
Sec. 3 we study a static seed metric for investigating the geometrical background of the 
model. We set up the field equations and calculate the stress-energy tensor. In Sec. 4 we 
implement the rotation by an intrinsic transformation operating on the 4-bein fields and we 
calculate the rotational and centrifugal forces. We set up the field equations for the rotating 
system and we calculate the stress-energy tensor of the rotating masses. 

 

2. THE ROTATING METRIC 

 

Firstly, we write down the line element of the interior region and we define all the 
quantities we will use throughout the paper. Using the elliptical Boyer-Lindquist co-
ordinates the line element reads as 
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R and the rotational parameter a are constants. All quantities with the subscript g are the 

constant values of the variables at the boundary surface matching the exterior solution. 

The linkage of the interior fields to the exterior fields is the junction condition 
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Inserting this relation into (2.1) and (2.2) we obtain 
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which are the boundary values of the corresponding quantities of the exterior Kerr metric 
described in [23-27] 
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ds dx dx dx i dx a i dx dx , dx a dr                     . (2.6) 

(2.1) and (2.6) have the same structure. By setting the mass parameter M=0, both metrics 
reduce to the same flat rotating metric, the rotation being implemented by a Lorentz 
transformation. So we believe that our ansatz is the natural continuation of the exterior 
solution into the interior region. Furthermore, we will show that both line elements are 
based on a similar geometrical structure. 

 

3. THE STATIC METRIC 

 

For a better understanding of the theory we start our investigations with a simplified 
form of (2.1), the static seed metric1. From the static line element  
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we read off the 4-bein components and we calculate the connexion coefficients in tetrad 
form and we split the latter in the following manner 
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1
 A similar attempt for the exterior solution we have published in [26] 
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where 
E is the curvature vector of the BL-ellipses and 

H  the curvature vector of their 

hyperbolic orthogonal trajectories 
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mn= {1,0,0,0} , bn= {0,1,0,0}, cn= {0,0,1,0} , un= {0,0,0,1} are the orthogonal unit vectors. E 
is the force of gravity.  From the Ricci tensor 
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we derive 
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We use the graded derivatives introduced in [28, 29] 
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They transform covariantly in the lower dimensional subspaces spanned by the unit 
vectors and simplify the calculations considerably. Solving (3.6) by inserting (3.3) we 
obtain 
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The new quantities 
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we will identify in a subsequent paper with the generalized second fundamental forms of a 
surface endowed with nonholonomicity. 
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can be explained as contributions of the evolutes of the BL-ellipses as mentioned in [23]. 
We will come across the quantity 

 2 2
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in the next Section. From (3.8) we calculate the components of the stress-energy tensor as 
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which are covariantly conserved. 

 

 

 



 6 

4. THE KERR INTERIOR 

 

In the last Section we have investigated with the help of a seed metric  the properties 
of the geometrical quantities we need to understand the proposed Kerr interior. An 
anholonomic intrinsic transformation  
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transforms the 4-bein fields and the metric as 
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where the primed indices denote the BL co-ordinates of the seed metric. Applying this 
transformation to the tetrad connexion we obtain 
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where the *A are the connexion coefficients of the seed metric and 
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is the dynamical part of the Kerr interior connexion. Calculating G with the help of (4.1) we 
obtain 
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wherein the new quantities are defined by 
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is the relativistic generalization of the Coriolis force and 

 2

nm R |n mD i c     (4.9) 

is the contribution from the differential rotation of the source. Shears T

nmD  arise as 

neighboring layers of the fluid have different orbital velocities. The Ricci tensor has the 
same structure as the Ricci of the exterior solution 
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The covariantly conserved components of the stress-energy tensor are 
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In addition to the above field equations the Maxwell-like equations 
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[m||n] T[m n]s [m||n] [mn ||s] [mn s]F 2 0, E 0, E 0         (4.14) 

are satisfied. On the boundary surface the hydrostatic pressure T11 vanishes and the 

matter current reduces to T T

34 03 0 03 0T M E    where M0 and E0 are the curvatures of the 

embedded interior and exterior surfaces respectively as we will show in the subsequent 
paper. All the above defined field strengths coincide with the analogous field strengths of 

the exterior solution for 
gr r . Thus both the metric and the first derivatives of the metric 

match at the boundary surface. 

The field strengths are well-behaved except at r=0, A=a, where the BL-ellipses 
degenerate to a line segment fixed by the foci of the confocal BL-ellipses. On that line 

segment the ellipsis curvature vector 
E  is infinitely large and the corresponding field 

strengths are zero. Only for / 2   , at the ‘vertices’ of the ellipsis, 
E vanishes and the 

corresponding field strengths get infinitely large. Rotating this line segment through φ, one 
gets a disk with a singular rim, the well-known Kerr singularity. Setting the rotational 
parameter a to zero the Kerr singularity reduces to the Schwarzschild singularity at r = 0. 
The appearance of singularities of this kind is a general feature of field theories where the 
field strengths are of structure 1/rn. 

 

 

5. OUTLOOK 

 

In the present paper we presented an exact solution of the Einstein field equations 
which could serve as Kerr interior as it matches the Kerr exterior at the boundary surface. 
Moreover, both solutions are on the same geometric footing. In an earlier paper we have 
shown that the Kerr metric is the metric of a surface embedded in a higher dimensional flat 
space.  In a further paper we will show that the interior solution proposed in this paper can 
be represented by a surface, too, which matches the surface of the exterior solution. 
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