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KERR GEOMETRY II. PREFERRED REFERENCE
SYSTEMS

Rainer Burghardt”
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We reformulate the Kerr model with the help of covariant tetrad formalism, so that the
theory appears in a Maxwell-like manner. We study three preferred reference systems.
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1. INTRODUCTION

Our aim is to show that we can rearrange the Kerr metric in such a way that it is
possible to read off preferred reference systems. From the tetrad connexion we derive
tensorial field strengths satisfying covariant field equations. Sets of observers are
correlated to these tetrads describing different states of motion in the Kerr field. The
guestion of covariance with respect to tetrad and co-ordinate representation was faced by
Treder [1] and the method of observer fields by Honl und Dehnen [2].

2. SOME PREFERRED SYSTEMS OF REFERENCE

In a former paper [3], we discussed the flat Kerr-like metric based on an elliptical co-
ordinate system

ds? = dx*” + dx** + [ o + iocRo)csdx“J2 +[ —iagoodx® + ocRdx“]2 , (2.1)
dxt= Ddr, dx? = AdS, dx® = odg, dx* =idt, o =2, 8y =2, 0= o= Asing,(2.2)
A A AT A

A’ =r*+a’, A’=r>+a’cos’9. (2.3)

A and r being the semi-axes of confocal ellipses with eccentricity a, w the observer’s
angular velocity, o the observer’s distance from the rotation axis and o the Lorentz factor

of this rotation. This model has a dynamical implementation of the rotation by a
generalized Lorentz transformation. The rotational effects which could be separated from
the field equations, are not a geometrical property of the space, but due to a local tetrad
transformation. The Kerr metric differs from (2.1) by the occurrence of the ‘gravitational
factor, whose geometrical meaning, will be explained in the next paper. With the definitions

ag = é, og = % §° =r>+a’*-2Mr, dx'=aga.dr, 0,= as%g (2.4)

the line element of the Kerr metric reads
ds? = dx”* +dx?* + [ apdx® +iogoodx* | +a3 [ ~iogoodx® + ogdxt ] . (2.5)

It is evident that the new metric (2.5) describes a geometry different from (2.1). It is not
possible to convert the rotating metric into a static one by a Lorentz transformation. We
emphasize that we have defined the circular velocity wo upon purely geometrical
considerations. The angular velocities do not depend on 3, the rotation is rigid on
ellipsoidal surfaces r = const.. From (2.5) we read the components of the 4-bein fields.
They were used by Carter [4], and we call them the System C.:
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€1 =0y, €, = A, €3 =040, €, = i0L00, €3 = —IA0LOG", €4 = A0y
(2.6)
1 » 1 3 Oy 4 3 . 4
€ =ag0z, €°=—, € =—, € =luz00, € =—-log0z®, € =050y
1 2 A 3 c 3 4 4
From (2.6) we calculate the tetrad connexion:
A =B *+N_°+C °+H °*+D °*+E_°. (2.7)

The first three parts of the connexion are space-like and describe the curvature of the
ellipses (B), hyperbolae (N) and circles (C) of the ellipsoids and hyperboloids of revolution

anS = bm Bn b* — bm l:)n BS’ NmnS =m, Nn m® — m,m, NS’ CmnS = CmCr?CS - CanCZ

C:=C, +F, F =diw’co, : (2.8)
BlzaS%Allzﬁ, NZ:%Alzzi, Clzlclzasﬁ, CZZEGZZ%COtS
Pe Pn o o

r. A
G, =0 = asKsmS, G, =0, = XCOSS

pe and py being the curvature vectors of the ellipses and hyperbolae [3]. {ms,bs,cs,us} is

the set of unit vectors, u® also the 4-velocity of the observers. F is the centrifugal field
strength and we note the relation oZC, = C, +F,. The mixed quantities are

C C C C C
Hns =Henls +Ho U, +Hg U, D,s =DpUs —Dgu +ocSD[nS]um

mn—'s sm—n sn—m? mn—'s sm—n

H =8, (Hon + Dpng ) D = 0eDrys Hi = 21020061, Cpy Dy =i0i00,C, 0 (2.9)
®,0 =200, ®,=0
. , e 1
H.. being the analogue to the classical Coriolis field. Its dual vector H" = —|§sm”er has

the direction of the axis of rotation. H-, is the total rotational field strength and it has a
contribution from the differential rotation law. In consequence of the last line of (2.9) HS,

vanishes and therefore the dual vector of H_ is normal to the ellipsoids and describes the
spin of the observers. As the differential rotating observer field is subject to shears, the

field strength Dy, expresses this action on the observers as can be seen from

um||n = _Anm4 = ng + E&Un, Qﬁn = Qﬁnn] + Qg:mn) = _Hgm - ng : (210)
The last term in (2.7) reads as
E,. =—|UEsU® —u,uE |, ES=F, +E,, (2.11)



En being the gravitational field strength, having only the radial component

1 M
E,=—o0g, =—00, —(r’—a 2.12
1= o %on = 050 (1 ) (212)
: o , 1 M
and is reduced for a = 0 to the gravitational field strength E, = —————=— of the

J1i—2M/r r?

Schwarzschild model. From the Lorentz factor of the rotation we derive another quantity
D, having its origin in the differential rotation law:

aiocR,m =F, +D,, D,, = 0300,,c°. (2.13)
R

A further decomposition of the Kerr metric was utilized by lyer and Kumar [5]. With the

Mr

2 the tetrads read as

auxiliary quantity y =

3 . 4 (1 . 3 4 1
e; =y0siny, ez=-|=——y|asiny, e; =0, e; ==
v ! (2.14)

e =——, e'=i2-y|2sing, e°=0, e'=y
3 y5sing’ 3 vy )8 ! )

We do not recommend using (2.14) for calculating the field strengths. The new system,
that we call system A is related to the system C by a generalized Lorentz transformation

(Sai(A) = A: (Sai(C), Al =0, A =—ioac0,0, Ay =ioac0,c0, Ay =a,c, (2.15)

Opc = Olg®, Olpe = ]/«/1— W50 (2.16)

o, Is the velocity of the system A relative to the system C. Performing the
transformation (2.15) we find y = a,casa, . With the definitions

Ape =Y Ope, B =a0 (2.17)
we get
3 4 ] ) 3 4
€3 = 0,80, €3= [0, (Wae —Wye)00”, €,=0, e, =a,.a50,
1 . (2.18)
3 4 . 3 4
e’ = , € =—io,c(Wac — 05 )as0z0, €7 =0, € =o,048,
3 a’ACaRG 4 4

The connexion coefficients for the system A are decomposed in a similar way as in (2.7).
The first two parts of the connexion remain unchanged. The other parts get a new
interpretation:



Cpn’ =CnChe® —c,c,Ch, Ch=C,+(F°-F,)+(D}°-D,) (2.19)

AC 2 2 AC _ .2 2
R = 0ac®pc00,, Dy~ = CAcOAcOAcHO

The mixed components of the connexion with space-like and time-like indices are simpler
because the deformations D, vanish and H, . consists of antisymmetric quantities only:

Hone = Q0 U+ Q5 U+ Q50U

mn-'s sm-'n sn—'m
A _ ~AC AC _ JAC AC AC _ ~: 2 AC _ ~;i 2
Qnm - an _an’ an - Hmn + Dmn’ Hmn - 2IO(AC(’)ACG[an]' Dmn - 2IO(‘AC(’OACHan]G (220)

QSn = _Qns éan

and we find the dual vector of HC to be parallel to the symmetry axis of the ellipsoids of
revolution. The motion of the observers is free of shear

Upyn = n +Entn, Qo =0 (2.21)

m-'n? (mn) —

The last part of (2.7) contains the gravitational field strength (2.12) and the centrifugal
forces

En’ =—(UEu’ —u,uEs), Ef=E,+(F°-F)+(Di°-D,). (2.22)
We note the useful relations

AC AC AC AC
F~ =-lo,.oH3, D" =-lw,ocD;

OFC _ o2 22 H 5 ., = (2.23)
m3_aACaROLS( m3 T m3)+|aACwACG m

The new component of the centrifugal field strength F*“is normal to the symmetry axis of

the ellipsoids of revolution and repulsive, while D’“is normal to the ellipsoids and
attractive.

The last system we discuss in this paper is the locally non-rotating system of Bardeen
[6], which we call the system B. With the definitions

Wge =850, Ogc = ]/\/l_ @cO” ) Ape =Y oge (2.24)

we get
3 4 3 i 4
€3 = 8050, €3 =0, €= i0gcas (Wpc — Ve ) 0RO, €4 = Ogc85ag
1 . (2.25)
3 4 3 . 4
e = ,e =0, e :—Ioch(coAc—coBc)ocR, € = ay-0s0y
chaRG 3 4 4

The velocity o,; of the system A relative to the system B is calculated by



W, + O
_ Oac T WOcp 1/ [ 2 2 _ 2 _
Wpp = 20 %A = ]7/ 1- 0" = Opcllc (1+ WAc® cgC )! ® g =—Wge- (2.26)

14+ 00 50

Since 1+ m,.m0° =azour definition of the angular velocity ®,s = é?)Z\A%differs from that

one of Bardeen. For (2.7) we get new components

C?=C,-(F°-F,)-(D¥*-D,), E?=E,-(F*°-F,)-(D°-D,)

BC 2 2 BC 2 2 (2.27)
F~ = agc05:00, D) = Ol gcWpcWpc0
There is no contribution to H,_,., but
Dyns = —Dpls + Do, +Hou, Dr=2d ¢, Ho o =2d.c, (2.28)
d, = 'chw 8cOm T 'chw sgmC + ng
The symmetric quantity D° = describes the shears acting on the observer fields
Unnn = D +Eou, D[an] 0. (2.29)

For M = 0 these three systems coincide. This case we have discussed in paper I. All the
field strengths defined above satisfy the Einstein vacuum field equations. We will show this
in detail in the next chapter.

3. FIELD EQUATIONS AND CONSERVATION LAWS

The Einstein vacuum field equations

Run = Anls = Aum = A Ayt + A A, =0 (3.1)

mn Is

may be rewritten in such a manner that they may be decomposed into fairly Maxwell-like
covariant equations. We have to make use of the graded derivatives [7]

cDm||n = CI)m|n’ CI)m||n = q)m|n - (BnmS + Nnms)q)s' (Dm||n = CDm|n - (BnmS + I\Inms + CnmS)CDs . (32)

For the system C we obtain for the Ricci tensor



Ry = = Ny = Npymem, + NnNm} —mm, [NSQS N NSJ
B, ~B,b°b, +BB, }— b.b_ [BSQS +B°B, J
_ _cg!m +C§C§}—cncm[C§ﬂs +C3CC —Q?Qg} | (3.3)
, _Eﬁum _EES J Fuu [Egus _ESES - Q?Qg}

s s CcC C
+ 2u(n l:QCm)us - 2HCm)stI - 2g2n3g2m3

With

cC _C
En||m - En||m
4 3

+c,c, CES, Q™ =H, ES=F +E, (3.4)

we are able to rearrange the field equations so that

N,m —N

njjm
2

m°m_ + NnNm} +b,b, |:Bs||s +B°B, J +

nl|s
2

+ BnIIm -B

b*b, +B,B, } +mm, [NSHS N NSJ n

nl|s
2

e +cgcg}-[53m _E%EC }+2Q§3933 0

n|im
- ’ (3.5)
G2 +CCE — CIES — 0 0° }: 0
[Egns _ESEC - Qggg} _0
[Q?;mns + ZQE:mS]Eg} =0
To verify this, we evaluate some of the brackets
Nyjm — Nom®my, + NN, = = b b QP
Boym — Buysb* by + BB, = m,m, 220>, ~E B,
’ ’ ,(3.6)

N°is +N°N, = -Q°Q,, B%s +B°B, = aZ(°°Q,, —B°E,

[cg”m + cgcﬂ _[ c  —ECEC } 20505, = (mm, +bb,)[ (1-a2 ) 070, + BE,

3

where the expressions Q*Q,_ are the contributions of the evolutes of the ellipses of the
flat geometry discussed in paper | [3]. The next two equations can be contracted into

C?:Hs - QEQ; =0, Eé”s - QEQSr =0 (37)



or expanded to
Cis +Fis —QgQg =0, E%s +Fs —QgQg =0. (3.8)
The second set of field equations is

Fomimy + D

_ _ C _ NC C _
[mlln [mun] - 0’ E[m|£!n] - 0’ Q[mnus] - Q[mnDs] - Q[mnEs] - O . (39)

There are also conservation laws for the field energy and the Poynting vector

[EZES+0Q70% ], =0, |200ES |, =0. (3.10)

From (3.5) we read the relations C°%s =E®%s, which indicate a closer geometrical
connection of the different slices of this geometry.

For the system A we get the same structure (3.5) for the field equations and
conservation laws, if we substitute for the covariant derivatives and field strengths the
expressions (2.19) - (2.23). Particularly

E° . +[Fic —F° |js+ | Dic —D° | s~ QRQ% =0, Q7| -2Q'EL =0

IIs Alls
4

=0, O 0 . (3.11)

[mn||s] —
3

AC AC
F[mlln] + D[mﬁn

[ESEL+Q004 ], =0, [2QE!] m="0

In the same way we treat the system B

ES||s - [FBSC - FS] lls™ [DEC - DS] s™ DrBSDSr =0, ngus =0
‘ (3.12)
R + Dy =0, [ ESES +D3DE | ,=0

m|n] mi|n]
4 4

There is no transport of gravitational energy in the locally non-rotating system

4. OUTLOOK

Although we have made some progress in understanding the Kerr geometry, we believe
that further considerations should be made. The equation (3.6) could not be understood
intuitively. In the equations (3.8), (3.11) and (3.12) the separation of the centrifugal and the
gravitational parts is tedious. Some improvements could be achieved by introducing an
extra dimension.
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