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1. INTRODUCTION 

 

Our aim is to show that we can rearrange the Kerr metric in such a way that it is 
possible to read off preferred reference systems. From the tetrad connexion we derive 
tensorial field strengths satisfying covariant field equations. Sets of observers are 
correlated to these tetrads describing different states of motion in the Kerr field. The 
question of covariance with respect to tetrad and co-ordinate representation was faced by 
Treder [1] and the method of observer fields by Hönl und Dehnen [2].  

 

2. SOME PREFERRED SYSTEMS OF REFERENCE 

In a former paper [3], we discussed the flat Kerr-like metric based on an elliptical co-
ordinate system 

 
2 22 22 1 2 3 4 3 4

R R R Rds dx dx dx i dx i dx dx                   , (2.1) 

 1 2 3 4

R R 2

A a
dx dr, dx d , dx d , dx idt, , a , , Asin

A A A

 
               


, (2.2) 

 2 2 2 2 2 2 2A r a , r a cos      . (2.3) 

A and r being the semi-axes of confocal ellipses with eccentricity a, ω the observer’s 

angular velocity, σ the observer’s distance from the rotation axis and R  the Lorentz factor 

of this rotation. This model has a dynamical implementation of the rotation by a 
generalized Lorentz transformation. The rotational effects which could be separated from 
the field equations, are not a geometrical property of the space, but due to a local tetrad 
transformation. The Kerr metric differs from (2.1) by the occurrence of the ‘gravitational’ 
factor, whose geometrical meaning, will be explained in the next paper. With the definitions 

 2 2 2 1

S S S R 1 S R

A
a , , r a 2Mr, dx a dr, a

A r

 
           

 
 (2.4) 

the line element of the Kerr metric reads 

 
2 22 22 1 2 3 4 2 3 4

R R S R Rds dx dx dx i dx a i dx dx                   . (2.5) 

It is evident that the new metric (2.5) describes a geometry different from (2.1). It is not 
possible to convert the rotating metric into a static one by a Lorentz transformation. We 
emphasize that we have defined the circular velocity ωσ upon purely geometrical 
considerations. The angular velocities do not depend on  , the rotation is rigid on 

ellipsoidal surfaces r = const..  From (2.5) we read the components of the 4-bein fields. 
They were used by Carter [4], and we call them the System C: 
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. (2.6) 

From (2.6) we calculate the tetrad connexion: 

  

 
s s s s s s s

mn mn mn mn mn mn mnA B N C H D E      . (2.7) 

The first three parts of the connexion are space-like and describe the curvature of the 
ellipses (B), hyperbolae (N) and circles (C) of the ellipsoids and hyperboloids of revolution 

s s ss s s s C s s

mn m n m n mn m n m n mn m n m n C

C 2 2

n n n n R n

S
1 S |1 2 |2 1 1 S 2 2

E H

1 |1 S 2 |2

B b B b b b B , N m N m m m N , C c C c c c C

C C F , F

1 a 1 1 1 r 1 1
B a , N , C a , C cot

A

r A
a sin , cos

     

     

            
       

         
 

, (2.8) 

ρE and ρH being the curvature vectors of the ellipses and hyperbolae [3].  s s s sm ,b ,c ,u  is 

the set of unit vectors, su  also the 4-velocity of the observers. F is the centrifugal field 

strength and we note the relation 2

R n n nC C F   . The mixed quantities are 

  

C C C C C

mns mn s sm n sn m mns mn s sm n S [ns] m

C C 2 2

mn s mn [mn] mn S (mn) mn R [m n] mn R |m n

|1 |1 |2

H H u H u H u , D D u D u D u

H a H D , D D , H 2i c , D i c

2 , 0

      

         

      

, (2.9) 

mnH  being the analogue to the classical Coriolis field. Its dual vector m mnr

nr

1
H i H

2
   has 

the direction of the axis of rotation. C

mnH  is the total rotational field strength and it has a 

contribution from the differential rotation law. In consequence of the last line of (2.9) C

13H  

vanishes and therefore the dual vector of C

mnH  is normal to the ellipsoids and describes the 

spin of the observers. As the differential rotating observer field is subject to shears, the 

field strength C

mnD  expresses this action on the observers as can be seen from 

 
4 C C C C C C C

m||n nm mn m n mn [mn] (mn) nm nmu A E u , H D            . (2.10) 

The last term in (2.7) reads as 

 
s C s s C

mn m n m n C n n nE u E u u u E , E F E       , (2.11) 
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En being the gravitational field strength, having only the radial component 

  2 2

1 S|1 S R 4

S

1 M
E r a

A
     


 (2.12) 

and is reduced for a = 0 to the gravitational field strength 1 2

1 M
E

r1 2M/r
 


 of the 

Schwarzschild model. From the Lorentz factor of the rotation we derive another quantity 
Dm, having its origin in the differential rotation law: 

 2 2

R|m m m m R |m

R

1
F D , D      


. (2.13) 

A further decomposition of the Kerr metric was utilized by Iyer and Kumar [5]. With the 

auxiliary quantity 
2

2Mr
 


the tetrads read as 

 

4 3 43

3 3 4 4

3 4 3 4

3 3 4 4

1 1
e sin , e i asin , e 0, e

1 1 a
e , e i sin , e 0, e

sin

 
          

  

 
        
    

. (2.14) 

We do not recommend using (2.14) for calculating the field strengths. The new system, 
that we call system A is related to the system C by a generalized Lorentz transformation 

 
s ss

3 3 4 4
i AC AC AC AC AC ACis 3 4 3 4

e (A) A e (C), A , A i , A i , A


                  , (2.15) 

 2 2

AC S AC AC, 1 1        . (2.16) 

AC   is the velocity of the system A relative to the system C. Performing the 

transformation (2.15) we find AC S Ra    . With the definitions 

 AC AC BC Sa 1 , a     (2.17) 

we get 

 
 

 

4 3 43
2

3 3 4 4AC R AC AC BC R AC S R

3 4 3 4

AC AC BC S R AC S R
3 3 4 4

AC R

e a , e i , e 0, e a a

1
e , e i , e 0, e a

a

           

            
 

. (2.18) 

The connexion coefficients for the system A are decomposed in a similar way as in (2.7). 
The first two parts of the connexion remain unchanged. The other parts get a new 
interpretation: 
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   s A s s A AC AC

mn m n m n A n n n n n n

AC 2 2 AC 2 2

n AC AC n n AC AC AC|n

C c C c c c C , C C F F D D

F , D

      

        
. (2.19) 

The mixed components of the connexion with space-like and time-like indices are simpler 

because the deformations 
mnsD  vanish and 

mnsH  consists of antisymmetric quantities only: 

*

A A A

mns mn s sm n sn m

A AC AC AC AC AC 2 AC 2

nm mn mn mn mn mn mn AC AC [m n] mn AC AC|[m n]

C

3n n3 3n

H u u u

, H D , H 2i c , D 2i c

   

              

   

 (2.20) 

and we find the dual vector of AC

mnH  to be parallel to the symmetry axis of the ellipsoids of 

revolution. The motion of the observers is free of shear 

 A A A

m||n mn m n (mn)u E u , 0    . (2.21) 

The last part of (2.7) contains the gravitational field strength (2.12) and the centrifugal 
forces 

      s A s s A AC AC

mn m n m n A n n n n n nE u E u u u E , E E F F D D        . (2.22) 

We note the useful relations  

 
 

AC AC AC AC

n AC n3 n AC n3

AC 2 2 2

m3 AC R S m3 m3 AC AC m

F i H , D i D

a H D i E

       

        
. (2.23) 

The new component of the centrifugal field strength AC

nF is normal to the symmetry axis of 

the ellipsoids of revolution and repulsive, while AC

nD is normal to the ellipsoids and 

attractive.  

The last system we discuss in this paper is the locally non-rotating system of Bardeen 
[6], which we call the system B. With the definitions 

 2 2

BC S BC BC BC BCa , 1 1 , a 1          (2.24) 

we get 

 
 

 

4 3 43

3 3 4 4BC R BC S AC BC R BC S R

3 4 3 4

BC AC BC R BC S R
3 3 4 4

BC R

e a , e 0, e i a , e a a

1
e , e 0, e i , e a

a

           

          
 

. (2.25) 

The velocity AB  of the system A relative to the system B is calculated by 
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  AC CB 2 2 2

AB AB AB AC CB AC CB CB BC2

AC CB

, 1 1 1 ,
1

  
                

   
. (2.26) 

Since 2 2

AC CB R1 a    our definition of the angular velocity AB 2

2Mra

A
 

 
differs from that 

one of Bardeen. For (2.7) we get new components 

 
       B BC BC B BC BC

n n n n n n n n n n n n

BC 2 2 BC 2 2

n BC BC n n BC BC BC|n

C C F F D D , E E F F D D

F , D

         

        
. (2.27) 

There is no contribution to mnsH , but 

 

B B B B B

mns mn s sm n ns m mn (m n) mn [m n]

2 2 C

m BC BC m BC BC|m 3m

D D u D u H u , D 2d c , H 2d c

d i i

     

        
. (2.28) 

The symmetric quantity B

mnD  describes the shears acting on the observer fields 

 B B B

m||n mn m n [mn]u D E u , D 0   . (2.29) 

For M = 0 these three systems coincide. This case we have discussed in paper I. All the 
field strengths defined above satisfy the Einstein vacuum field equations. We will show this 
in detail in the next chapter. 

3. FIELD EQUATIONS AND CONSERVATION LAWS 

 

The Einstein vacuum field equations 

 
s s r s

|smn mn n|m rm sn mn sR A A A A A A 0      (3.1) 

may be rewritten in such a manner that they may be decomposed into fairly Maxwell-like 
covariant equations. We have to make use of the graded derivatives [7] 

    
2 3 4

s s s s s

m|| n m|n m || n m|n nm nm s m|| n m|n nm nm nm s, B N , B N C              . (3.2) 

For the system C we obtain for the Ricci tensor 
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2
2 2

2
2 2

3 3

4 4

s s s
||smn n||m n||s m n m n m s

s s s
||sn||m n||s m n m n m s

C C C s s C rs C

n||m n m n m C||s C s C sr

C C C s s C

n||m n m n m C||s C s C

R N N m m N N m m N N N

B B b b B B b b B B B

C C C c c C C C

E E E u u E E E

        
    

       
    

        
      

      
  

4

rs C

sr

s s C C

(n Cm)||s Cm) s n3 m32u 2H F 2

 
  

      
  

. (3.3) 

With  

 
4 3

C C s C [ms] ms C

n||m n||m n m C s C C s s sE E c c C E , H , E F E       (3.4) 

we are able to rearrange the field equations so that 

 

2
2 2

2
2 2

3 3

3

4

s s s
||sn||m n||s m n m n m s

s s s
||sn||m n||s m n m n m s

C C C C C C C C

n||m n m n||m n m n3 m3

s s C s C rs C

C||s C s C s C sr

s

C||s

N N m m N N b b B B B

B B b b B B m m N N N

C C C E E E 2 0

C C C C E 0

E E

       
    

        
    

          
      

     
  



4

s C rs C

C s C sr

sm [ms] C

C ||s C s

E 0

2 E 0

    
  

    
  

. (3.5) 

To verify this, we evaluate some of the brackets 

 

   

2 2

2 2

2 2

3 3

s s3

n||m n||s m n m n m 3s

s 2 s3

n||m n||s m n m n m S 3s n m

s s s3 s s 2 s3 s
||s ||ss 3s s S 3s s

C C C C C C C C 2 s3

n||m n m n||m n m n3 m3 n m n m S

N N m m N N b b

B B b b B B m m a E B

N N N , B B B a B E

C C C E E E 2 m m b b 1 a

     

     

        

            
      

s

3s sB E  
 

, (3.6) 

where the expressions s3

3s   are the contributions of the evolutes of the ellipses of the 

flat geometry discussed in paper I [3]. The next two equations can be contracted into 

 s rs C s rs C

C||s C sr C||s C srC 0, E 0       (3.7) 
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or expanded to 

 s s rs C s s rs C
||s ||s ||s ||sC sr C srC F 0, E F 0        . (3.8) 

The second set of field equations is 

 
4 4 4 4

C C C

[m||n] [m||n] [m||n] [mn||s] [mn s] [mn s]F D 0, E 0, D E 0        . (3.9) 

There are also conservation laws for the field energy and the Poynting vector 

 
4

s C sr C [ms] C
m||C s C rs C s|4

E E 0, 2 E 0           . (3.10) 

From (3.5) we read the relations s s
||s ||sC E , which indicate a closer geometrical 

connection of the different slices of this geometry. 

For the system A we get the same structure (3.5) for the field equations and 
conservation laws, if we substitute for the covariant derivatives and field strengths the 
expressions (2.19) - (2.23). Particularly 

 

4

4 4 3

4

s s s s s rs A sm sm A
||sAC AC ||s A sr A ||s A s||s

AC AC AC

[m||n] [m||n] [mn||s]

s A sr A sm A
m||A s A rs A s|4

E F F D D 0, 2 E 0

F D 0, 0

E E 0, 2 E 0

                

   

          

. (3.11) 

In the same way we treat the system B 

 
4

4 4

s s s s s rs B sm
||s ||s||s BC BC B sr B ||s

BC BC s B sr B

[m||n] [m||n] B s B rs |4

E F F D D D D 0, D 0

F D 0, E E D D 0

            

     

. (3.12) 

There is no transport of gravitational energy in the locally non-rotating system 

 

4. OUTLOOK 

 

Although we have made some progress in understanding the Kerr geometry, we believe 
that further considerations should be made. The equation (3.6) could not be understood 
intuitively. In the equations (3.8), (3.11) and (3.12) the separation of the centrifugal and the 
gravitational parts is tedious. Some improvements could be achieved by introducing an 
extra dimension. 
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