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The velocity of a freely falling observer falling in a tube through the center of a stellar
object described by the Schwarzschild interior solution is calculated. In a comoving system
one can investigate the tidal forces that act on the freely falling observer.
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1. INTRODUCTION

In the following, we want to consider a motion in the interior of a stellar object which
formally corresponds to the free fall in the exterior. Without a doubt, this will be a
gedankenexperiment because inside the matter no free motion is possible. Thus, we
imagine a tube bored through the center of the stellar object through which we let fall a test
particle from arbitrary positions from the exterior. Since we do not admit forces further than
gravitational forces, the test particle will accelerate to the center of the stellar object, will
come out at the opposite side of the object, and will come to rest in a position
symmetrically to the starting point. Its motion will reverse, the test particle will move back
and forth. Relevant computations have been performed in the context of Newton's theory.
Similar considerations that concern the interior Schwarzschild field are not known to us.
We try to find an ansatz for the speed of a test particle inside the matter.

2. FREE FALL

Firstly, we turn to the simpler problem, i.e. that a test particle starts freely falling in
from infinity. Its speed on the surface of the stellar object is*

v, = _\/Zr] (2.1)

and must coincide with the initial speed on the surface of the interior. In a previous paper
[1] we have shown that freely falling observers cannot experience the force of gravity. This
force is nullified by a force having its origin in the acceleration of the observer. We obtain
such a force G from the Lorentz transformation which connects the system of a static
observer with that of a freely falling observer. For the latter G - E = 0 must be valid,
whereby E means the force of gravity inside the stellar object. Thus, we already found a
way to determine the velocity of an observer freely falling through the tube. From the
exterior Schwarzschild solution we know that the speed of a freely falling observer is
defined by the geometry. The redshift factor is the reciprocal of the Lorentz factor of the
motion of the freely falling observer and has for the interior solution the form

1
a, = 5[3005719 —~cosn] . (2.2)
The space-like part of the interior solution is geometrically described by a cap of a

sphere with the aperture angle n,. n<n, is an arbitrary polar angle fixing the position of
an observer. More details on this subject can be found in our paper [2]. If one wants to

! The marker g denotes the value of a quantity on the boundary surface of the interior and exterior solutions.
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replace in (2.2) the trigonometric functions by the standard Schwarzschild co-ordinate r,
first one has to use the relation

2
cos’n=1- % (2.3)

and then to continue with the values at the boundary surface

EPYNI CPR LF (2.4)
2R =T Ry '

Finally, one has for the Lorentz factor

(2.5)

and for the speed of the falling observer

v, (r)=- 1—%{3 /1—2r—M— /1— 2':"3er . (2.6)

One sees immediately that this relation coincides with (2.1) for r =r,. In paper [1] we

have set up a formula for a freely falling object which does not come from infinity, but
started its motion from an arbitrary position r, within the exterior Schwarzschild region.

This formula simply has to be transferred for the case where the test particle continues its
motion into the inside. One has
vV, —| - f
r.O
= (2.7)

and one finds the relation (2.6) again for r, =o. If the body starts on the surface of the

stellar object one has v, (vg,vg) =0.

We show some examples in the Figure below. The surface of the stellar object is
indicated by the dashed lines.



In order to bring in further considerations on the freely falling observer, we limit
ourselves to the simpler case where the test particle starts its fall from the infinite, but we
study only the interior region of the stellar object. For this purpose we consult the formula
(2.2) and

2
’

V= —\/1—%(300511g —cosn), o=a; (2.8)

whereby we omit the marker 1 from now on. Thus, we already have made accessible the
parameters of a Lorentz transformation

L1.= a, Li.z —lawv, Lf.= o, Lj.=0t (2.9)

which demonstrate the connection between the static and the falling observers. The unit
vectors of the static system in the 1- and 4-directions

m,, ={10,0,0}, u,={0,0,01} (2.10)
take from the view of the falling observer the form
m,. = {oc,0,0, —iocv}, u,. = {iOLV, 0,0, OL} ) (2.11)
The freely falling observer has for his own system
'm,. ={10,0,0}, 'u,. ={0,0,0,1}, (2.12)
however, his unit vectors are measured by the static observer as
'm, = {oc,0,0,iocv}, U, = {—iocv,0,0, oc} . (2.13)

The last four formulae contain the basic laws of the relativity theory.

To get more information on the forces of the falling system we start with the static
metric of the interior Schwarzschild solution



ds® =R%dn® + R?sinnd9® + R? sinnsin®9de” + a2dit” . (2.14)

We read the bein vectors from the metric and compute the field strengths of the
static system which are transformed into the falling system by (2.9). For the partial
derivatives one has

0y =oci, 0, =—lov——-.
Ron ROM

(2.15)

The Ricci-rotation coefficients, which describe the curvatures of the surface
maintain their geometrical properties under Lorentz transformations. Thus, they transform
like tensors. If one subjects the covariant derivatives to a Lorentz transformation the
Lorentz term

D =L@ = P — LI L5 @y [~ Ay @

m'|n’ s —m'|n

m'{|n’ s'? An'm'S' = er:rr:SsAnms , (216)
arises that has its origin in the not-constant parameters of the Lorentz transformation.
Thus, the basics of the free fall through the interior of a stellar object are outlined in short.
For the further treatment of the problem we can hark back to the results of the free fall in

the exterior field. However, we have to point out the differences.

Having computed the field quantities

m

1 .1
B .=<a—cotn,0,0,—-lav —cot
{ oo R n}

C.,= oclcotn, 1 cotS,O,—iavicotn (2.17)
R R sinn R

from the static system with the help of the Lorentz transformation we only have to deal with
the Lorentz term

Lom® =Ll - (2.18)
It has the components
Lot =Gy Loyt =—i1G,, G,=-a—3M (2.19)
Y Py 8

Since it is evident from (2.16) that the Lorentz term joins the connexion coefficients
one obtains

L, +A,,* =G, —E. =0 . (2.20)

The two quantities E and G have different sources, G a kinematic one and an E a
geometrical one. They are formally identical and nullify each other. Inside a stellar object a
freely falling observer cannot experience the force of gravity, just as can a freely falling
observer in the exterior field. Thus, we have fulfilled a requirement proposed at the
beginning.
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Since the Ricci tensor and thus the Einstein tensor are Lorentz invariant, we obtain
well-known structures for the field equations [1] which we do not need to repeat here.
Thus, the stress-energy tensor has the form

T

m'n’

=-m.m_p-b b .p-c,c.p+u.u,p, (2.21)

whereby the values (2.11) are to be considered. Written in more detail

T..= + (P+u,) (2.22)
[T —ia®v oV

one recognizes that the stress-energy tensor splits into a static and into a kinematic part. p
is the hydrostatic pressure of the fluid sphere, which is taken in rough approximation for
the stellar object, and p, is its energy density. u,+p is the total energy density which

consists of the hydrostatic pressure-energy density and the energy density attributed to the
mass of the stellar object.

After some algebra one obtains with the help of the expressions (2.2), (2.8), and
with the relation E, . = a o, which has been treated in [1] the conservation law

T =P +(P+1,)E, =0 . (2.23)

m' |n’'
It corresponds to the conservation law of the static system

P.=(P+H)E., P=0, =0, a=123. (2.24)

3. TIDAL FORCES

Up to now we have strictly followed the investigations of the static system by
observing the components of the static field strengths in the falling system. As the first new
result we have found that the freely falling observer experiences no force of gravity.
Similarly to the theory of the exterior field, we will re-write the formulae in such a way that
we obtain relations for the tidal forces which affect the freely falling observer in place of the
force of gravity. We obtain the first component of the tidal forces from the interplay of the
force of gravity and of the Lorentz term.

The relation (2.20) can be formulated more generally

s’ s’ s’ ] 1,,S' ] ' s’
G, =uGuw -uu .G ='u.G., 'u-"u.'u,G (3.1)
s' s' s' 1 1S’ ] [ s '
E.,., =-u.E . u +uu E =-"u.E 'U+'U.'u.E

nm

One has



L. =Q.,.  +G,.° . (3.2)
Since
G, B +E.5=0 (3.3)
one has in the Ricci-rotation coefficients
Lym™ + B = Qo (3.4)

S

wherein Q> possesses only the one component
. i sin
Q1'4'1 = Q4' = N (35)
Py V
in accordance with (2.19). On the boundary surface one has
i sin '
Q-tTe__ 1 (3.6)
pg Vg pg

This quantity coincides with a component of the second fundamental forms of the surface
theory of the exterior solution which describes the shrinking surface that accompanies a
freely falling observer. Since we are concerned now and through out only with the freely
falling system we omit the primes at the indices and the kernels. The equation (3.5) we
write more briefly as Q,; =Q, and we supplement

Qu=Q, Q,=B, Q;=C, Q[mn] =0. (3.7)

Thus, we have inferred the complete set of the second fundamental forms of the
shrinking surface and at the same time the tidal forces. We split the Ricci-rotation
coefficients into

AC=%A+Q0 U, —Q W, A, =*A,+u.Q.’ (3.8)

and thereby we decompose the Ricci into a purely spatial part and a part which describes
the field mechanism of the tidal forces

Rmn: *R mn
[ Qunell® + Qi Q]
0, [ Q- Q| (3.9)
-u, [*AnlsuS + *AsnrQrs}
~u U, [ QU™ +Q Q" |
The underlined indices indicate the spatial components of a quantity and the hat denotes
the associated 3-dimensional covariant derivative. *R is the 3-dimensional Ricci. Its

structure corresponds to the 4-dimensional Ricci. It consists only of 3-dimensional
guantities with the appropriate graded derivatives



mn

R, = _l:*BnAm + *Bn*Bm:| - |:*Cn/\m + *Cn*Cm:l
’ ’ . (3.10)
b b, [*BSAS " *BS*BS} c.c, [c " *CS*CS}

However, the further treatment of the Einstein field equations are more difficult than
that of the exterior field. The squared brackets in (3.9) which describe the field mechanism
of the tidal forces decouple only partly from the field equations. Thus, one has to compute
the Einstein tensor and from it the stress-energy tensor. After having solved the Q-
equations one arrives at the expression already computed (2.22). From (3.9) one can
isolate a fairly Maxwell-like Q-relation

2Q . s KTy - (3.11)

On the right side of the equation is the energy-current density of the matter which is
coupled to the tidal forces. The geometry does not appear flat inside the matter for a freely
falling observer. That was the case for the exterior field because the curvature factor of the
metric and the Lorentz factor neutralize each other for the space-like field quantities. This
is not the case for the interior field.

4. SUMMARY

We have generalized Newton’s free fall through a stellar object for the case of
general relativity by applying the interior Schwarzschild solution. In addition, we have
calculated the tidal forces acting on a freely falling observer and we have established the
field equations for these tidal forces.
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