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We will show that the Schwarzschild interior and exterior solution can be represented by a 
common formal system if one uses the methodology of 5-dimensional embedding. Black 
holes are excluded from the outset. Moreover, it is not possible to approach the event 
horizon. The interior part of the solution covers that critical region. 
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1. INTRODUCTION 

 

To obtain a common representation of both solutions of the Schwarzschild theory, 
the interior and exterior, we have to use a common co-ordinate system for both solutions. 
The appropriate co-ordinate system for this aim is the co-ordinate system of the interior 
solution, which will be extended to the exterior solution. While for the interior part the origin 
of the co-ordinate system is fixed, the origin of the exterior part is moving on the co-
ordinate axis of the extra dimension in the flat embedding space. In former papers [1, 2] 
we have shown that five dimensions for embedding the Schwarzschild geometry are 
sufficient. However, one has to use six variables. Thus, the theorems of Kasner and 
Eisenhart are not violated. For more details, we refer to our papers. 

 

2. THE CO-ORDINATE SYSTEM 

 

We use a Cartesian co-ordinate system in the 5-dimensional flat embedding space 
as shown in Fig. 1. For the sake of simplicity we suppress all co-ordinates except the extra 

co-ordinate R, also labeled by 0'x  and the standard Schwarzschild co-ordinate r, also 

labeled 1'x . The orientation of R is opposite to the orientation of the extra co-ordinate R of 
the exterior solution in our former paper [1]. The orientation of the polar angle  is ccw 

with respect to the local extra co- ordinate 0x . 

 

 

Fig. 1 
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For the interior part of the solution, the origin of the co-ordinate system is fixed on 

the symmetry axis of the system. The radius vector R   points to the cap of the sphere 

which represents the space-like part of the interior solution. The aperture angle of the cap 

is called 
g . 

gR  is pointing to the boundary surface of the two solutions. In contrast, the 

origin of the exterior part is moving on the symmetry axis. The polar angle  is a function 

of the co-ordinate r. The prolongation of R  is the curvature vector   of the Schwarzschild 

parabola. The tip of    is located on the Neil parabola. If one follows the motion of a point 

to the center of gravitation the tip of the vector R  moves on the Schwarzschild parabola to 

the boundary surface, and then on a circle of the cap of the sphere to the symmetry axis. 
The tail of   moves to the boundary surface, as well. Then the curvature vector is called 

g . Hereupon an auxiliary vector moves on the cap synced with R . This auxiliary vector 

has already been treated in [2] and it will not be discussed in this paper. On the boundary 
surface the tip of   is fixed on Neil's parabola and coincides with the fixed tip of the 

auxiliary vector. 

In accordance with the new co-ordinate system, one has to take the negative root of 
the Schwarzschild parabola and the positive root of the Neil parabola 

  
3

2 r
R 8M r 2M , R 2M

M 3

 
      

 
. (2.1) 

Since the polar angle  is the angle of ascent of the Schwarzschild parabola as well, one 

obtains from (2.1) 

 dR tan dr, dR cot dr     , (2.2) 

where    0 ' 1'x ,x R,r  and    0' 1'x ,x R, r  are the Cartesian co-ordinates of the points of 

the Schwarzschild parabola and the Neil parabola. The velocity of a freely falling object is 

 v sin 2M r     . (2.3) 

The redshift factor is 

 a cos 1 2M r     . (2.4) 

The motion of the curvature vectors of the two parts of the solution is substantial 
and explains most of the geometric properties of the model. In Fig. 2 and in Fig. 3 we 
illustrate the curvature vectors and their differentials evoked by this motion. If  

        0' 1' 0 ' 1'dx ,dx dR,dr , dx ,dx dR,dr   (2.5) 

are the changes of the curvature vectors of the Schwarzschild parabola and of the Neil 
parabola, expressed in Cartesian co-ordinates of the embedding space, then one obtains 
with the rotation matrix 

 a

a'

cos sin
D , a 0,1

sin cos

  
  

   
 (2.6) 
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      Fig. 2         Fig. 3 

and with the help of (2.2) the components of the differentials of both curves with respect to 
the local system 

  a a1 1
dx 0, dr , dx dr,0

cos sin

   
    

    
 . (2.7) 

The change of the curvature vector during its outward motion consists of two parts. The 
one contribution stems from the motion of the tail of the curvature vector along the 
Schwarzschild parabola, the other from the motion of the tip along the Neil parabola. Thus, 
we have 

  a a a 1 1
d dx dx dr, dr

sin cos

 
     

  
 . (2.8) 

Since the curvature vector of the Schwarzschild parabola has the value 32r M   

one finds once more by differentiation of this expression and with the help of (2.3) 
0d d dr sin    , where the well-known relation r 3r  has been applied. Moreover, 

one likewise obtains with (2.3) dsin dr cos d       . And finally, 

 1 1
dx dr d

cos
   


 . (2.9) 

1dx  is the positive tangent vector of the Schwarzschild parabola. The right side of (2.9) is 

positive as well because 
2 1d   is negative. The reason is that the angle  

decreases throughout the outward motion. Utilizing the two just-derived relations one has 

  ad d , d     . (2.10) 

The first component thereof describes the change of   on the Neil parabola, the second 

on the Schwarzschild parabola. As a byproduct we note 
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|1

1
  


. (2.11) 

We frequently make use of this relation. Transforming (2.8) with the inverse matrix of (2.6) 
to the Cartesian co-ordinates of the embedding space, one gets by using (2.2) 

  a'd dR dR, dr dr    , (2.12) 

a relation that one can see in ones mind's eye with Fig. 2. Bearing in mind that R is 
negative in the new co-ordinate system one can write the curvature vector with the use of 
the Cartesian co-ordinate system of the embedding space as 

     
2 22 R R r r     . (2.13) 

Thereof one directly obtains (2.12). By differentiation of this relation one gets 

 0 0' 1'R R r r
d d d d

 
      

 
  (2.14)  

and by comparison with the rotation matrix (2.6) 

 
R R r r

cos , sin
 

   
 

. (2.15) 

Operating on the Schwarzschild parabola with the rotation matrix one has for the local 
partial derivatives 

 0 1cos sin , sin cos
dR dr dR dr

   
           . (2.16) 

Horizontal quantities are quantities situated in the horizontals of the surfaces. They 
are independent of R. For such quantities remains in (2.16) only 

 0 1sin , cos
dr dr

 
       . (2.17) 

In particular, one has 

  |ar sin , cos   . (2.18) 

Heretofore only changes of   have been considered where the curvature vector 

has been constrained to the Schwarzschild parabola. To apply embeddings one has to 
face the environment of the embedded space and has to examine the exterior geometry. 
Therefore, the prolongations of the quantities into the embedding space are required. 
Although an infinitesimal prolongation would be sufficient, the model provides a co-
ordinate system (Fig. 4) that enables a global prolongation. Going on upwards on the 
Figure to a curve parallel to the Schwarzschild parabola one lengthens the curvature 
vector by d . Bearing in mind the orientation of the co-ordinate system one has, however, 
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 0

0dx d ,


     


. (2.19) 

 

Fig. 4 

In the last paragraphs the techniques necessary to set up the embedding of the 
Schwarzschild model have been treated in relation to the new co-ordinate system and in 
consideration of the unusual signs. Neither the moving origin1 have been discussed in 
detail nor the common version of the two Schwarzschild solutions. We make up leeway in 
the next Section. 

 

3. THE EMBEDDING 

Let us envisage once more Fig. 1. The vector R  points from the 0’-axis of the 

embedding space to the Schwarzschild parabola. R  is normal to the parabola and has as 

prolongation the curvature vector. The values of these vectors have the ratio 1:2. The 

vector R  settles the local 0-axis. Its components are 

      a' a acos , sin , , 0 , d d , d     R R R R R R R R . (3.1) 

A further vector  aR  pointing from the origin of the local co-ordinate system to the 

Neil parabola is defined by 

 a a a R R , (3.2) 

where the values R  and R  have the ratio 1:3. We find the relation 

                                            

1
The distance from the moving origin of the standard Schwarzschild origin on the 0’-axis is 

 
r

d(r) r 4M 1
2M

   . 



 7 

   ad d d d    R R , R R . (3.3) 

The ansatz (3.1) can be used for the interior solution as well. Having left the 

Schwarzschild parabola, R  moves along the arc of a circle. The curvature vector of the 

Schwarzschild parabola stops at the boundary surface and is responsible for the factor 3 in 
the time-like arc element of the interior solution. We start with a pseudo-hyper sphere 

 

3 '

2 '

1'

0 '

4 '

sin sin sin

sin sin cos

sin cos

cos cosi

cos sini

   

   

  

  

  

R R

R R

R R

R R

R R

 (3.4) 

for both parts of the solution. This pseudo-hyper sphere is a component of a double 
surface. The field strengths and the field equations of this simple model have been 
discussed in [2]. Suitable projectors referring to the theory of double surfaces settle the 
field equations for both parts of the Schwarzschild model. The derivation of the field 
equations is worked out in one calculation. Firstly, we note the projectors 

 

0 1 4 2 3

0 1 4 2 3

0 1 2 3 4

0 1 2 3 4

g g

sin
E : ,

r

cos
I : 1,

3 cos cos


     




     

  

R R
P P P P P

R
P P P P P

R R

. (3.5) 

One obtains the gravitational field strengths 
aE  of both parts of the solution from the 

Ricci-rotation coefficients 

 4 4 4

4a 4 4a aA E  P R . (3.6) 

If 
g  is the curvature vector at the boundary surface of the two parts of the solution 

one has 

 a a

T T g T g T

1 cos 1 sin 1 cos 1 sin
E : E , , I : E ,

a a a a

      
      

       

. (3.7) 

Therein is 

    1 0 1

T T g g

g

1
E : a x cos , I : a x ,x 3 cos cos        

R R . (3.8) 

Constraining the function 
Ta  for the interior solution onto the cap of the sphere remains 

  1

T g

1
a x 3cos cos

2
       , (3.9) 
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if the embedding conditions 
g const.R = R  and 

g g2  R  are used. This is the well-known 

factor of the time-like arc element of the interior solution. (3.7) shows a strong similarity of 
the structures of both parts of the solution. One can set up a closer relation to these 
equations if one writes for the time-like arc element 

 4dx a di , a cos cos
 

     R R . (3.10) 

If one specifies 

 

4

T T

g g g g

4

T g g T

E : 3 , , a 2 cos

dx a dit, dit di , a a

I : 3 , , a 3 cos cos

dx a dit, dit di , a a









      

     

        

     

R R R

R R R R

, (3.11) 

one has demonstrated the special features of both parts of the solution. Now we consider 

the change of the quantity a


 on the Schwarzschild parabola and normal to the 

Schwarzschild parabola. If one writes the force of gravity as 

 
,b ,b ,b ,bb b

a a ,b a

cos cos sin sin1
E a

a cos cos




      
   

  

R R R R
P P

R R
 (3.12) 

one obtains a rather complicated expression 

 

,0 ,00

0 0

,1 ,11

1 1

cos cos
E

cos cos

sin sin
E

cos cos

  
 

  

    
 

  

R R
P

R R

R R
P

R R

. (3.13) 

With the special values (3.5) and (3.11) we recover the quantities (3.7). For the 
development of the model, one has to evaluate the derivatives of the projectors. Above all, 

4

4P  is deduced from the ratio of the time-like metric factors 
Ha  of the spherical geometry 

and a


 of the Schwarzschild geometry 

 4 H
4 H

a
, a cos

a


  P R . (3.14) 

We note that the two variables in 
Ha  are independent. In contrast, the quantities R  

and R  depend on r for the exterior part of the solution because the tip and tail of the 

curvature vector   R R  move on the Schwarzschild parabola and on the Neil parabola. 

Firstly, one has 

 4 4

4|a H|a 4 |a

H

1 1
a a

a a




  P P .  
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With 

  H,aa cos , sin      

one obtains 

 b

H|a a b

H

1
a E

a
 P  .  

Furthermore, 

 
|a |a |a |a

|a

cos cos sin sin1
a

a cos cos




     


  

R R R R

R R
.  

Apart from the term 

 
|1 |11

a a

cos cos

cos cos

  
  

  

R R

R R
  

this has been calculated above. The  -term 

 
1 |1 1

1
E : , I : 0    


  

provides the important contribution 
1  for the exterior solution. In contrast, it vanishes for 

the interior solution. In total one has 

 4 b 4

4|a a b 4 a aE E   P P P . (3.15) 

Finally, that results in 

 

 

0 1 4 4 4

0 1 4 4|0 4|1 |1

0 1 4 4

0 1 4|a 4 a

1 3
E : , 0, cot

I : 1, 1 E

      
 

    

P P P P P

P P P P
. (3.16) 

Further projectors mentioned in (3.5) and their derivatives can be calculated from 
the metric factors of both parts of the geometry, but in an essentially simpler way. They 
satisfy the relation 

 a a

b |||bP R . (3.17) 

For evaluating the field equations one needs the auxiliary quantity 

  
g

g 1 f

[ba] [a|||b]f

P P P , (3.18) 

which has only a few components for the exterior solution and vanishes for the interior 
solution 
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 0 4 g

[01] [41] |1 [ba]

1 3
E : 2 cot , I : 0     

 
P P P . (3.19) 

Projecting the identically vanishing curvature tensor of the embedding space 

 gh d 5 d g d

ab ghc abc [ba] gcR 2 A 0  P R P  (3.20) 

onto the Schwarzschild geometry one finds the 5-dimensional Ricci 

 5 d c

ab [ac] dbR 2 A 0 P  . (3.21)  

If one performs the dimensional reduction, this relation simplifies to 

 5 s r

mn [mr] snR 2 A 0 P  . (3.22) 

To get the 4-dimensional Ricci one has to extract the 0-components from the 5-
dimensional Ricci. These 0-components we condense to 

 s

mn [m s]nZ 2A A . (3.23) 

The 
mnA  are the generalized second fundamental forms of the theory of surfaces. One 

obtains 

 4 s r

mn mn [mr] snR Z 2 A 0  P . (3.24) 

Contracting this expression and inserting it into the Einstein field equations one obtains on 
the right side 

 s r s tr

mn mn mn [mr] sn mn [tr ] s

1 1
T Z Zg 2 A g A

2 2

   
       

   
P P , (3.25) 

the common stress-energy tensor of the model. It vanishes for the exterior part of the 
solution and provides the well-known expressions for the hydrostatic pressure and energy 
density for the interior part. Thus, we only need to analyze the conservation law for the 
interior part. With respect to the second equation of (3.19) the divergence of the stress-
energy tensor simplifies to 

 n n s n

m m ||n m [s ||n]

1
Z Z 2A A

2
 

 
   

 
 . (3.26) 

The right side of this equation corresponds to the contracted Codazzi equation and 
vanishes. The conservation law is satisfied in an almost general form. The pressure 
function contained in the stress-energy tensor has a pole. At a distinct aperture angle of 
the cap of the sphere which represents the space-like part of the interior solution the 
hydrostatic pressure becomes infinitely high. That is the reason, why the boundary surface 
of the two parts of the solution cannot be positioned arbitrarily. Thus, the Schwarzschild 
radius, occurring in the exterior solution, is outside of the physically possible range of the 
model. An observer is never exposed to infinitely high forces and no infalling observer can 
reach the velocity of light. 



 11 

4. SUMMARY 

 

We have worked out a common representation of the exterior and interior 
Schwarzschild solution with the help of embedding the geometry into a 5-dimensional flat 
space. Since the interior part of the solution must necessarily cover the critical region of 
the exterior solution all physical quantities are well-behaved. Furthermore, there is no 
room for black hole physics. 
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