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Abstract 
Usually it is demanded that the metric and its 1st derivatives have to match at 
the boundary of two adjacent regions which are solutions to Einstein’s field 
equation. We propose a new linking condition concerning gravitational mod-
els based on surfaces which could be embedded into a higher dimensional flat 
space. We probe this condition for the Schwarzschild interior and exterior 
solution. 
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1. Introduction 

The question of how spaces with different geometrical structures can be adapted 
to each other takes up a lot of space in gravity theory. Stellar objects are de-
scribed by interior solutions of Einstein’s field equations, their gravitational 
fields by exterior solutions. The two solutions have to be adjusted at the surface 
of the stellar object. The constituent quantities of the two geometries must 
merge smoothly into one another. Numerous authors have dealt with the prob-
lem of junction conditions in recent years. 

O’Brien and Synge [1] examined boundary conditions and jump conditions 
on surfaces where quantities and their derivatives can be discontinuous. To be 
consistent, they required the metrics and their 1st and 2nd derivatives to match at 
the boundary of two regions. Cocke [2] considered a non-static infinite cylinder 
that he cut out of a Friedman universe. The cylinder was surrounded by a gravi-
tational field. For the linking condition for both regions, he relied on the metric 
and its 1st derivatives, which he treated as the 1st and 2nd fundamental forms. 

How to cite this paper: Burghardt, R. 
(2020) Linking Conditions for Models with 
Geometrical Basis. Journal of Modern Phys-
ics, 11, 355-364. 
https://doi.org/10.4236/jmp.2020.113022 
 
Received: February 11, 2020 
Accepted: March 1, 2020 
Published: March 4, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2020.113022
https://www.scirp.org/
https://doi.org/10.4236/jmp.2020.113022
http://creativecommons.org/licenses/by/4.0/


R. Burghardt 
 

 

DOI: 10.4236/jmp.2020.113022 356 Journal of Modern Physics 
 

Israel [3] [4] basically relied on the 2nd fundamental forms of a 3-surface. He 
discussed the physical discontinuities and mismatching of coordinates. He was 
mainly concerned with expanding spherical shells and their linking condition to 
the surrounding empty space. Bonnor [5] and Faulkes found a class of interior 
solutions that match an exterior solution with a moving boundary. As a linking 
condition, they used the matching of the metric and its 1st derivatives. For the 
interior solution, they used the interior Schwarzschild solution in isotropic 
coordinates. Lanczos [6] [7] considered in connection with the de Sitter cosmos 
two-dimensional distributed singularities in which the metrics remain finite and 
constant but take a jump with respect to the normals. He interpreted this as a 
surface distribution of matter. In another paper, he delved into the problem in 
more detail and replied to a criticism from Sen. He dealt in detail with the ques-
tion to what extent the 1st derivatives of the metric must coincide at the boun-
dary of two regions. Abraham [8] examined the discontinuities using the Gauss 
and Codazzi equations and builds on the generalized expressions of the 
O’Brien-Synge relations. The problem of matching two regions is also significant 
in cosmology. Galaxies and clusters are thought to be embedded into an FRW 
universe with homogeneous mass distribution. At the boundaries of such va-
cuoles, linking conditions must be adhered. We cite the paper of Gilbert [9] as a 
representative of this topic. Leibowitz [10] investigates junction conditions in 
going over to admissible coordinates in the case of comoving coordinates. He 
claims that the Oppenheimer-Snyder solutions are correctly matched. At-
tempted modifications are shown to be incorrect. Lichnerowicz [11] investigated 
junction conditions which can match up to the 3rd derivative of the functions at 
the boundary. Sen [12] described the discontinuities on a surface that is covered 
with matter. The examination was carried out independent of coordinate sys-
tems. Taub [13] faced the existence of 3-dimensional hyper surfaces in spacetime 
across which there may be discontinuities in the stress-energy-momentum ten-
sor and the metric and their derivatives. Kumar [14] examined spherical shells in 
an empty universe. The 1st derivatives of the metric are discontinuous at the 
boundaries. The stress-energy-momentum tensor is defined with δ -functions. 
Coburn [15] determined discontinuity relations for a charged incompressible 
fluid with conservation laws and the 1st law of thermodynamics, and using shock 
waves. Edelen [16] obtained a dynamical theory of discontinuity surfaces and the 
associated jump strengths of both physical and geometrical quantities. It forms 
the basis for a general analysis of galactic structures. Huber [17] considered ad-
jacent regions with different structures. He deformed the metrics of these re-
gions in such a way that the linking conditions are satisfied at the boundary sur-
face of these two regions. McVittie [18] studied collapsing models in a more 
general way and tried linking conditions as well. Dautcourt [19] [20] dealt with 
the jumps of the stress-energy-momentum tensor and considered layers on sur-
faces moving with the velocity of light. Papapetrou [21] and Treder investigated 
discontinuities on hypersurfaces and the associated problem of shock waves. 
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Hayward [22] discussed regions with boundary surfaces at which the normal 
unit vector changes discontinuously. The validity of the second linking condi-
tion was surveyed by Nariai and Tomita [23] [24] [25] for the collapsing Op-
penheimer-Snyder model [26]. Although the metric of the interior OS solution 
matches the exterior OS solution—the Schwarzschild solution in comoving 
coordinates—the 1st derivatives of the metrics do not match at the boundary. 
Nariai and Tomita found a new exterior solution for the OS model, which fulfills 
the second linking condition for the OS interior and is free of singularity. Mitra 
[27] found that the two Schwarzschild solutions do not comply with the 2nd 
linking condition. He proposed a new interior solution that meets both linking 
conditions at the boundary to the exterior solution. 

Thus, the methods of the Nariai, Tomita, and Mitra to solve the linking prob-
lem were quite different. We want to go a third way and replace the condition 
that the 1st derivatives of the metrics have to match with another that is quite 
plausible and that connects the interior and exterior Schwarzschild solutions. 

In Sec. 2, we present the Schwarzschild geometry in the light of Flamm’s [28] 
original paper. We focus on the radii of curvature of the normal and inclined 
slices of the surfaces on which the Schwarzschild geometry is based. The metrics 
have the signature 4. The time-like arc element is defined by ( )4dx i c dt= . The 
tag “g” indicates the value of a quantity at the boundary of the surfaces. In Sec. 3, 
we show that the 1st derivatives of the metrics of the Schwarzschild models do 
not match, and we replace them by the postulate that the surfaces representing 
the interior and exterior Schwarzschild solutions have to have common tangents 
at the boundary surface. 

2. The Schwarzschild Geometry 

The new linking condition which we have introduced has a limited area of ap-
plication. It can only be applied to models that can be explained geometrically, 
i.e., models which have an embedding. We require that  

I) the metrics match at the boundary. 
II) the tangents (cutting tangents) of the embedded surfaces coincide. 
We inspect this procedure facing the interior and exterior Schwarzschild solu-

tions. Both solutions can be embedded into a 5-dimensional flat space, whereby 
a 6th variable is necessary for the exterior solution. The space-like part of the in-
terior solution is represented by a spherical cap, the exterior part by Flamm’s 
paraboloid. The two regions have to be matched. 

Using quasi-polar coordinates, the standard form of the exterior Schwarz-
schild metric is formed as follows: 

2 2 2 2 2 2 2 21 2d d d sin d 1 d21

Ms r r r tM r
r

ϑ ϑ ϕ  = + + − − 
 −

.     (2.1) 

Here r is the radial coordinate. The space-like part of the metric is the line ele-
ment on Flamm’s paraboloid. The parabolic intersection curve of this surface, 
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i.e., the Schwarzschild parabola is given by 

 ( )2 8 2R M r M= − .                        (2.2) 

R is the coordinate of the extra dimension in the 5-dimensional embedding 
space normal to r. Flamm has given a detailed geometrical explanation. His 
proposed geometrical properties are shown in Figure 1. 

Differentiating (2.2) and substituting for R, we obtain the ascent of the 
Schwarzschild parabola 

 

2
d 4 2 2tan , sin , cos 1
d 21

M
R M M Mr
r R r rM

r

η η η= = = = = −
−

,  (2.3) 

with the angle η  as the angle of ascent of the Schwarzschild parabola. 
A straight line normal to Flamm’s paraboloid is cutting the coordinate R at 

the point P. The distance from P to the parabola is R  and the inclination η  
is the same as the angle of ascent of the parabola. From Figure 1, one can derive 

 sinr η= R .                          (2.4) 

The radius of curvature of the Schwarzschild parabola can be calculated using 
elementary methods and (2.4) 

32 22 2
2 sin

r r rr
M M

ρ
η

= = = = R . 

 

 
Figure 1. Flamm’s explanation of the parabolic properties. 
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Finally, we find the fundamental relations 

 2 , 3ρ ρ= + =R R R .                     (2.5) 

3R  is the distance between the point P, the “pole” of the parabola and the base 
point of the curvature vector of the parabola, lying on the evolute of the 
Schwarzschild parabola, i.e., on Neil’s parabola. With the insight of the factors 2 
and 3, we have made a significant contribution to understand the interior 
Schwarzschild solution, as we will see later. 

With the help of (2.3) the Schwarzschild metric can be written as 

 2 2 2 2 2 2 2 2 2
2

1d d d sin d cos d
cos

s r r r tϑ ϑ ϕ η
η

= + + − .         (2.6) 

Further we put for the proper time 

 d cos d cos di T i t iη ρ η ψ= = .                  (2.7) 

Here, iψ  is an imaginary angle and cosρ η  are the radii of a family of (open) 
pseudo circles (hyperbolae of constant curvature) lying in the 0 ' 4 ',x R x = 
-planes of the flat embedding space. 4 'x  is an imaginary coordinate. A simple 
calculation shows that 

1 d d
cos

r ρ η
η

= − . 

Thus, we are able to re-write the Schwarzschild line element as 

 2d d d ,i k
i ks i kρ ρ η η= = ,                   (2.8) 

exhibiting all the curvatures of the slices of the surface described by the 
Schwarzschild metric. The curvature radii of the slices and the associated angles 
are 

 

3

1 2 3 4

1 2 3 4

2 , , sin , cos

, , , .

r r r
M

i

ρ ρ ρ ρ ϑ ρ ρ η

η η η ϑ η ϕ η ψ

= = = = =

= = = =

        (2.9) 

Tangents can be calculated on the intersection curves with these curvatures. 
The line element of the interior Schwarzschild solution was given by Flamm 

as 

22 2 2 2 2 2 2 2 2 2 21d d sin d sin sin d 3cos cos d
4 gs tη η ϑ η ϑ ϕ η η = + + − − R R R . (2.10) 

The space-like part of the metric is the metric of a hypersphere with the radius 
.const=R  and the polar angle η . But only a part of that hypersphere is used. 

A spherical cap with the aperture angle gη  is cut off from the hypersphere 
and placed on the Schwarzschild parabola from below. The intersection curves 
of the spherical cap and the Schwarzschild parabola at the boundary must have 
common tangents (cutting tangents). We will write about this later. Unfortu-
nately, Flamm’s form of the interior metric is rarely found in literature. In the 
time-like part of the metric, the trigonometric functions are replaced by expres-
sions with the radial variable r, by substituting sin rη = R . This avoids to un-
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derstand the geometry. 
Differentiating sinr η= R , one finds 

1d d
cos

rη
η

=R . 

Writing for the coordinate time using (2.5), one obtains 

 d d 2 dgi t i iρ ψ ψ= = R ,                  (2.11) 

where gρ  is the curvature radius of the Schwarzschild parabola at the boundary 
surface. Finally, we have the equation for the metric of the interior Schwarzschild 
solution 

 
22 2 2 2 2 2 2 2

2

2

1d d d sin d 3 cos cos d
1

gs r r r i
r

ϑ ϑ ϕ η η ψ = + + + − 
−

R R

R

. (2.12) 

Here, we have met the magical factors 2 and 3 as explained in (2.5). The 
proper time of the interior Schwarzschild model is described by two concentric 
pseudo-circles with the radii 3 cos gηR  and cosηR . This circle is lying in the 

0 ' 4 ',x x   -plane of the flat 5-dimensional embedding space1. 
We realize that the Schwarzschild interior solution is soldered to the exterior 

solution, because it contains elements of the exterior solution, i.e., gρ  the cur-
vature radius of the Schwarzschild parabola at the boundary. 

3. The Linking Conditions 

We turn to the discussion of the linking conditions. Evidently, the 1st linking 
condition for the Schwarzschild solutions is satisfied. Their metrics coincide at 
the boundary. Considering the interior solution using (2.12) and putting gη η= , 
one obtains  

 1 d , 2 cos d cos d
cos g g g

g

r i iη ψ ρ η ψ
η

=R ,             (3.1) 

i.e., the corresponding expressions of the exterior metric (2.7) at the boundary 
surface. 

It was Mitra [27], who showed that the 2nd linking condition cannot be applied 
to the Schwarzschild solutions. The first derivatives of the metrical coefficients 
do not match. The radial part of the line elements (2.6) and (2.12) for both solu-
tions is 

2
2

1 d
cos

r
η

. 

Differentiating the metrical factor, we get 

11 |1 |12 3|1

1 2sin
cos cos

g ηη
η η

 
= = 
 

. 

Here, all the indices are coordinate indices. Now one has to calculate |1η  for 
both models. From 

 

 

1More details one can find in our monographs [29] [30]. 
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1 1d d , d d
cos cos

r rη ρ η
η η

= = −R  

one has 

|1 |1

1 1,
cos cos

η η
η ρ η

= = −
R

. 

Thus, recalling 2ρ = R , one obtains the relations 

 11|1 11|14 4 4
2sin 2sin sin,
cos cos cos

g gη η η
η ρ η η

= = − = −
R R

.         (3.2) 

Evidently, these relations are also valid at the boundary surface. However, they 
differ by the factor −2, whereas the factor 2 is typically for the Schwarzschild 
geometry. Thus, the commonly accepted 2nd linking condition of O’Brien and 
Synge is not satisfied for the Schwarzschild geometry and has lost its legitimacy. 

For the derivatives of the 44g  one obtains for the interior solution 

( )

( )

( )

2
44|1 |1

|1

1 3cos cos
4
1 3cos cos sin
2
1 13cos cos sin
2 cos

g

g

g

g η η

η η ηη

η η η
η

= −

= −

= −
R

 

and at the boundary 

44|1
1 sin gg η=
R

. 

For the exterior solution one has 

 ( ) |1
2

44|1 |1

1 1cos 2cos sin 2cos sin sin
cos

g η η ηη η η η
ρ η

= = − = − = −
R

, (3.3)  

and at the boundary 

44|1
1 sin gg η= −
R

. 

The difference in the signs can be explained with the fact that the curvature vec-
tors R  and ρ  have opposite directions. Robson [31] also recognizes that the 
1st derivatives of the metric of the Schwarzschild models do not match at the 
boundary surface and he tries to force the match using a coordinate transforma-
tion. However, he drops this condition and agrees with the other authors to de-
mand the coincidence of the 2nd fundamental forms. 

In earlier papers we repeatedly mentioned that interior and exterior solutions 
should have common tangents at the boundary surface. We believed that this 
was a commonly accepted criterion for matching solutions. However, a careful 
study of the literature has shown that this requirement is not in use. In contrast, 
general validity is ascribed to the O’Brien-Synge method. Now we make up the 
proof that our requirement II provides functional results for the Schwarzschild 
geometry. 

https://doi.org/10.4236/jmp.2020.113022


R. Burghardt 
 

 

DOI: 10.4236/jmp.2020.113022 362 Journal of Modern Physics 
 

To calculate the tangents to the Flamm’s paraboloid, it is sufficient to face the 
equation of the Schwarzschild parabola (2.2). We already have calculated the as-
cent of the Schwarzschild parabola with (2.3), i.e., 

 d tan
d
R
r

η= ,                          (3.4) 

which is equally valid at the boundary surface. 
For the interior solution we have to calculate the ascent of the circle 

2 2 2 2 2 d, ,
d
R rr R R r
r R

+ = = ± − = ±R R . 

with sin , cosr Rη η= =R R  one finally obtains 

d tan
d
R
r

η= . 

Here, the sign is chosen to be “+” because the spherical cap is adapted to the 
Schwarzschild parabola from below. We recognize that the interior and the exte-
rior surfaces have a common tangent (cutting tangent) at the boundary surface. 
But this is evident right from the beginning, because the curvature vectors R  
and ρ  are lying in the same straight line at the boundary surface and are nor-
mal to the cap of the sphere and the Schwarzschild parabola and thus normal to 
the tangents of the two surfaces. Accordingly, the tangents have to coincide. We 
could have done without the calculation. 

Lastly, we investigate the time-like parts of the models. Taking a glance at the 
interior metric (2.12), we find that the flow of time is characterized by two con-
centric pseudo circles with the radii 3 cos gηR  and cosηR  founding a pseu-
do-ring sector. It is parameterized in the 5-dimensional flat space by 

0 '

4 '

3 cos cos cos cos

3 cos sin cos sin
g

g

x i i

x i i

η ψ η ψ

η ψ η ψ

= −

= −

R R

R R
. 

Since both circles have the same ascents, it is sufficient to calculate the ascent 
of one circle, i.e., for a specific slice .constη =  

 

2 20 ' 4 ' 2 2

0 ' 4 ' 0 '

4 ' 0 '

cos

d dtan , tan .
d d '

x x
x x xi i i th
x x t

η

ψ ψ ψ

+ =

= − = − = − =

R
         (3.5) 

For the exterior solution, one has 
0 '

4 '

cos cos

cos sin

x i
x i

ρ η ψ

ρ η ψ

=

=
 

and the equation of the pseudo circle for a specific slice cos .constρ η =  is 

 

2 20 ' 4 ' 2 2

0 ' 4 ' 0 '

4 ' 0 '

cos

d dtan , tan
d d '

x x
x x xi i i th
x x t

ρ η

ψ ψ ψ

+ =

= − = − = − =
.         (3.6) 

The result is also valid at the boundary surface. Thus, one gets common tan-
gents. 
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Once more we note that the last calculation is superfluous since the expres-
sions for the radii of the two interior pseudo circles reduce for gη η=  to 

2 cos cosg g gη ρ η=R . 

The pseudo circles of the interior and exterior solutions coincide at the boun-
dary surface and have the same tangents. 

4. Conclusions 

We showed that the interior Schwarzschild solution and the exterior Schwarz-
schild solution have common tangents at the boundary surface. We made this 
clear by calculating the ascents of the tangents of the two Schwarzschild solu-
tions. Thus, the postulation that the tangents of surfaces representing gravita-
tional models coincide at the boundary surface can serve as a linking condition 
and can replace the O’Brien-Synge condition, which does not apply to the 
Schwarzschild models. 

Furthermore, it is quite likely that our method will also be applicable to the 
Reissner-Nordström model and to all models of the Kerr family. 
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