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Abstract:  In previous papers [1,2] we have studied transformations between 
comoving and non-comoving systems for the cosmological models of the de 
Sitter family. Transformations between expanding coordinates and static 
coordinates are well known in the literature. Based on these coordinate 
transformations we derive Lorentz transformations between comoving and non-
comoving reference systems. We borrow the relative velocity between these 
reference systems from a Lorentz transformation. In the present paper, we start 
from the static de Sitter model, but we drop the condition of the constancy of the 
spatial curvature. Thus we obtain a cosmological model which includes mass 
density and pressure and which is an exact solution of Einstein's field 
equations. The model is related to the Friedman cosmos and the Melia cosmos. 
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1. INTRODUCTION 

In this paper we present an exact solution of Einstein's field equations for a 
cosmological model which includes pressure. It is not our intention to propose a new 
cosmological model which is close to Nature. We want to provide some mathematical 
methods for astrophysicists, who want to build a new model. In the present case we start 
from the static de Sitter universe. We extend this model in such a way that the basic 
geometric structure is time-dependent. The model is positively curved and closed. In Sec. 
2, we revise the de Sitter universe. We explain the tetrad method, we calculate the Ricci-
rotation coefficients, and we note the Lorentz transformation, which transforms the non-
comoving 4-bein system of the static dS model into the comoving 4-bein of an expanding 
observer system. In Sec. 3 we allow the curvature of the dS cosmos to be time-dependent 
and thus we obtain an expanding model with pressure. In Sec. 4. we derive the field 
quantities for the non-comoving system with a Lorentz transformation and we realize that 
with this transformation we do not return to the static dS model. In Sec. 5 we work out 
some features of the model. In particular, we show that the recession velocity of galaxies 
cannot exceed the speed of light. Attention is drawn to the similarity of this model to the 
model of Melia. 

 

2. PRELIMINARY REMARKS 

 In [1] we have assumed that the de Sitter cosmos need not be interpreted as an 
expanding model. The coordinate grid obtained by Lemaître with the help of a suitable 
transformation expands from an arbitrarily chosen point, whereby the space itself remains 
unchanged. This coordinate system can be assigned to an observer system which consists 
of four orthogonal unit vectors (tetrads) and which joins the motion of the coordinate 
system. From the metric of the static version of the dS cosmos the tetrads of the static 
system can be read. They are connected with the comoving one via a Lorentz 
transformation, from which we read the relative velocity of the observer. The method can 

be assessed more generally in the following way: If is i ' i '

i |ix   the matrix of the coordinate 

transformation1 then  

 
m' im' i '

m i ' i
m

L e e    (2.1) 

is the associated Lorentz transformation with 

 m'

m

i v

1
L

1

i v

   
 
 
 
 
  

. (2.2) 

 is the Lorentz factor and v is the relative velocity of the observers. The 4-bein systems 

of the comoving and the non-comoving systems are 

                                            

1
 4 4'dx idt, dx idt '   
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1' 2 ' 3 ' 4 '

1 3 42

1 2 3 4

2 2

0

e e , e r, e r sin , e 1

e , e r, e r sin , e a

a 1 1 r

    

     

    R

. (2.3) 

Herein r, ,   are polar coordinates and 
0R  the time-constant radius of the pseudo-hyper 

sphere which is responsible for the geometric framework of the de Sitter geometry. 

With (2.3) and 

 
t tss i sr i sr i

mn i mt i n t i
[n|m] [n|r ] [m |r ]

A e e g g e e g g e e    (2.4) 

we can calculate the Ricci-rotation coefficients which we decompose according to 

 s s s s

mn mn mn mnA B C U   . (2.5) 

With the unit vectors 

        m m m mm 1,0,0,0 , b 0,1,0,0 , c 0,0,1,0 , u 0,0,0,1     (2.6) 

we further split (2.5) into 

 s s s s s s s s s

mn m n m n mn m n m n mn m n m nB b B b b b B , C c C c c c C , U u U u u u U      . (2.7) 

B and C are the lateral field quantities, and U the radial field quantity 

 m m m

0 0

a a 1 1 r
B ,0,0,0 , C , cot ,0,0 , U v ,0,0,0 , v

r r r

    
          
     R R

. (2.8) 

With these quantities and using the graded derivatives 

 
1 2 3

s s s

n||m n|m n||m n|m mn s n||m n|m mn s mn sU U , B B U B , C C U C B C       (2.9) 

we calculate the Ricci 

 

1

2 2

3 3

1 2 3

s s r s r

mn mn |s n|m rm sn mn s n rn

s s

mn ||s s m n

s s

n||m n m n m ||s s

s s

n||m n m n m ||s s

s s s s s s

||s s ||s s ||s s

R A A A A A A , A A

R U U U h

B B B b b B B B

C C C c c C C C

1
R U U U B B B C C C

2

    

 
  

  

   
   
      

   
   
      

    
      

        

 (2.10) 

 mnh diag 1,0,0,1  is a submatrix of the tetrad metric  mng diag 1,1,1,1 . 
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3. THE MODEL WITH PRESSURE 

 The model of Friedman is pressure-free and because of its simplicity it does not 
seem to explain the cosmic reality sufficiently. An extension of the stress-energy 
momentum tensor by pressure components requires the solution of a further equation. For 
its determination parameters are necessary, which one has to determine by observations. 
We want to investigate whether it is possible to develop an expanding cosmological model 
which draws the pressure as well as the mass density from the geometric structures of the 
model. We also require the model to be an exact solution of Einstein's field equations. The 
field equations should describe both the physics of an observer who comoves with the 
expansion and of an observer who does not participate in this motion. Between the two 
observer systems a Lorentz transformation should mediate. The relative velocity contained 
in this Lorentz transformation should be derived from the geometry and is to be interpreted 
as recession velocity of the galaxies.  

The models of the de Sitter family have pressure and mass density, if one re-
interprets the cosmological constant. However, both variables are independent of time. 
This is a property that is not quite apparent from the point of view of an expanding 
cosmological model. For the dS model Lemaître has found a coordinate transformation, 
which allows us to pass from the non-comoving coordinate system to the coordinate 
system which follows the expansion of the universe. Florides [3], Mitra [4], and Melia [5,6] 
have provided coordinate transformations for the de Sitter cosmos, Lanczos cosmos, the 
Lanczos-like cosmos, and the anti-de Sitter cosmos. These coordinate transformations 
have been assigned by us [1,2] to pseudo-rotations or Lorentz transformations, which 
establish the connection between comoving and non-comoving observers. But we have 
assumed that the existence of such a transformation does not necessarily infer an 
expansion of these models. These models have in their static forms physically less 
explainable forces acting from any point of the universe into all directions. The comoving 
systems follow these forces. Families of observers move away from these points in 'free 
fall'. Similar to Einstein's elevator the above-mentioned forces do not occur any longer in 
the moving system. One can assume by all means that all four models are static provided 
one defines freely falling reference systems to explain the motion of the observers. 
Constant pressure, constant mass density, the invariance of the stress-energy tensor ([2], 
Mitra [7]), and the constant spatial curvature of the universe suggest this interpretation. All 
four models are not well suited to describe a universe with pressure.  

Melia [6,7] and Mitra [8] have tried to assign non-comoving coordinates to the 
Friedman model, but they could not specify a complete transformation. We suppose that 
there do not exist such coordinates and therefore we will not apply the coordinate 
technology to our model. As seed metric for our model with pressure we choose the metric 
of the positively curved and therefore closed de Sitter model. We extend it to a genuine 
expanding model by making the pseudo-hyper sphere, which forms the basic geometric 
structure of the model, time-dependent. We therefore demand that 

  tR R   (3.1) 

Therefore we do not look for an  'expanding metric'. Should there be an expanding metric, 
then this metric would not only describe the curvature properties of space, but also its 
expansion. We believe that the possibility is not large enough for such a geometric 
constuct to exist. Neither is there an expanding coordinate system. Only the coordinate 
system of the dS cosmos and its metric remain. This coordinate system is sufficient to 
perform all the necessary mathematical operations. The expanding universe consists of a 
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series of similar dS cosms. At any time, the geometry of the pressure cosmos is a 
snapshot of the dS-cosmos. 

Instead of coordinate systems we consider observer systems that are defined in 
each point of space. They consist of four orthogonal unit vectors, one of them is time-like, 
and the others are space-like. There are two kinds of these tetrads. Those which follow the 
expansion of the cosmos, and those which do not join the motion. Between the two 
systems a Lorentz transformation acts. The velocity parameter of the Lorentz 
transformation corresponds to the recession velocity of the galaxies. The fact that we 
cannot use the coordinate systems for the expanding universe, is not a loss. The geometry 
of the universe and its physical parameters can be fully described by the tetrad method. 
The mathematical basis for it was provided by the Italian mathematicians Ricci, Bianchi 
and Levi-Cività about 1900 and was briefly described in Sec. 2 on the basis of the dS-
cosmos. 

We start from the structure of the dS-cosmos with the line element 

 2 2 2 2 2 2 2 2 2

2

1
ds dr r d r sin d cos dt

cos
       


. (3.2) 

Therein is 

 2 2a 1 cos 1 r      R   (3.3) 

The radius R  of the pseudo-hyper sphere is time-dependent in accordance with (3.1). The 

relative velocity between the comoving and non-comoving observer systems we take from 
the dS model 

 
r

v sin  
R

 (3.4) 

and we note that this velocity is closely connected with the geometry, namely with the 
polar angle . 

The lateral field quantities of (2.8) transform homogeneously into the comoving 
observer system 

 m m

m' m' m m' m' mB L B , C L C  . (3.5) 

One obtains 

 

m'

m'

1 1 1 i
B a ,0,0, i va ,0,0,

r r r

1 1 1 1 1 i
C a , cot ,0, i va , cot ,0,

r r r r r

   
        
   

   
          
   

R

R

. (3.6) 

Due to the structure of the first three components of the second parenthesized expressions 
one might assume that a curved geometry could be made flat by a Lorentz transformation. 
However, the relation 

  a 1  . (3.7) 

is valid. Therein  is the Lorentz factor, ie a kinematic quantity. By contrast, a is a 

geometrical variable which is related to the curvature of space. However, since the relative 
velocity is linked to the structure of the space, also the quantities  and a are connected 
by (3.7) and thus simplify the components of the lateral field quantities. However, they still 
contain information about the curvature of space. 
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The time-like components of the quantities B and C in (3.6) are equal. We can 
correctly surmise that the fourth component of the radial field quantity U of (2.7) accepts 
the same value in the comoving system, so that the expansion scalar has the simple form 

    s ' s ' s '

||s ' s ' s ' s '

i
'u B C 'U 'u 3 , 'u 0,0,0,1     

R
. (3.8) 

Moreover, we assume that the universe is expanding in free fall. In accordance with the 
principle of Einstein's elevator no radial forces occur in the comoving system. Thus, we 

have 
1''U 0  and have exploited the third and last field quantity of the system 

 
m'

i
'U 0,0,0,

 
  
 R

. (3.9) 

However, at the beginning we have demanded that the radius of curvature of the 
universe is time-dependent, but position-independent. Therefore, we define 

 
m' |m' |4 '

1 1
0,0,0,
 

   
 

F R R
R R

. (3.10) 

It will be seen that 

 |4 '

1 i
 R

R R
  (3.11) 

is a viable approach. Thus, the numerical identities 

 4 ' 4 ' 4 ' 4 'B C 'U
  
  F  . (3.12) 

apply. From (3.9) the relation 

 
1

s ' s '

||s ' s ''U 'U 'U 0   (3.13) 

immediately follows. With 
4' i T'     and the proper time T'  of the comoving observer 

 
1 1

0, 1, 0   R R R
R R

 (3.14) 

corresponds to the Friedman equation. For the lateral field quantities the relations 

 

 

2 2

3 3

s ' s '

m'||n ' m' n ' m' n ' ||s ' s '2 2

s ' s '

m'||n ' m' n ' m' n ' m' n ' ||s ' s '2 2

1 1
B B B 'm 'm , B B B

1 2
C C C 'm 'm b b , C C C

     

      

R R

R R

 (3.15) 

arise. Therein the graded derivatives according to (2.9) have been used, this time in the 
primed form. One obtains the stress-energy tensor 

 

 m'n' m'n' 0 m' n'

02 2

T pg p 'u 'u

1 3
p ,

   

    
R R

. (3.16) 

The equation of state for the cosmos is 

 0

1
p

3
   . (3.17) 
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The conservation law 

  m'n'

||n' | ' 0|4' 0 4'T 0, p 0, 3 p , 1,2,3


       F   (3.18)  

confirms that the pressure is independent of position and that with (3.10) and (3.11) the 

quantiy F  has been chosen correctly. Substituting the values of p and 
0  into (3.18), 

second equation, one gains for F  the anticipated term. To the above relations  

  |4' 0 4'p p  F  (3.19) 

can still be added. 
0p  is often called effective mass. 

 

4. THE NON-COMOVING SYSTEM 

 

 If our pressure model is supposed to be useful in the creation of a cosmological 
model which describes Nature reasonably well, then we must also be able to specify all 
quantities and relations of the model in the non-comoving system. We note right away at 
the outset that a transformation to this system does not lead to the static dS system, which 
we have used as a starting model. Only the lateral field quantities B and C, which 
transform like tensors according to (3.5), take the dS-form. The radial quantity U which 
essentially describes the expansion of the cosmos must be re-derived from the Ricci-
rotation coefficients. However, these transform inhomogeneously from the comoving to the 
non-comoving system 

 s m'n's s' s s s s'

mn m n s' m'n' mn mn s' n|mA L 'A L , L L L   . (4.1) 

Since the Lorentz transformation is a pseudo-rotation in the [1,4]-subspace, the 
above relation is simplified to 

 s s s

mn mn mnU 'U L  . (4.2) 

With 

 
 

s s s

mn m n mn

s s s s 4 1

mn m n mn n sn 41 14

U h U h U ,

L h L h L , L L L , L

 

   
  (4.3) 

one finally gains the simple relation 

 
m m mU 'U L  . (4.4) 

Taking into account (4.1) and (2.2), one first has 

 2 2

1 |4 4 |1L i v , L i v     .  

With the definition of the relative velocity (3.4) we obtain the auxiliary relation 

   m'

|m m m m m'

a 1 i
v 1,0,0,0 v , L v ,0,0,

 
      

 
F F F

R R R
 (4.5) 

and finally 
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  3 3 2

m

1 1 1
L v ,0,0,i i v,0,0, i

 
       
 R R R

. (4.6) 

From (4.4) one obtains 

 3 3 3 2

m

1 1
U v ,0,0, i v

 
   
 R R

, (4.7) 

a quantity which apparantly differs from the static dS-expression. However, it may be in 
accordance with 

  2 2

m m m m m 4 1

1ˆ ˆU U f , U v ,0,0,0 , f i v ,0,0, i v
 

        
 

F F
R

  

decomposed in such a way that after switching off the expansion  0F  only the dS-

expression for the radial force [2] remains. In this context it can be discussed, wether the 
radial field quantity in the non-comoving system can be derived from a metric coefficient. If 
this is not the case, there does not exist a non-comoving coordinate system either. It is 

easy to find  m |m
f ln  . However, the dS-piece of the quantity Û  is only a gradient if is 

constR . , ie if the pressure model is reduced to the dS model. We recognize that a 

Lorentz transformation of the reference system is not always accompanied by a 
transformation of the coordinate system. 

Differentiating (4.7) we obtain the relation 

 
1

s s

||s sU U U 0  . (4.8) 

A comparison with (3.13) shows that the U-equations are form-invariant under a Lorentz 
transformation. In addressing the B- and C-equations one must again consider (4.5) 

 

 

2

3

2 3

2 2 2

2 2

m||n m n m n 2

2 2 2

2 2

2 2 2

2 2

m||n m n m n m n 2

2 2 2

2 2

s s s s

||s s ||s s2 2

1 1
v i v

01
B B B m m ,

0

1 1
i v v

1 1
v i v

01
C C C m m b b ,

0

1 1
i v v

1 2
B B B , C C C .

 
   
 
 

     
 
 
   

 

 
   
 
 

      
 
 
   

 

     

R R

R

R R

R R

R

R R

R R

 (4.9) 

For the field equations, the relations (2.10) can be used. For the stress-energy 
tensor, we expect 
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 

   

2 2

11 0 22 33

2 2 2

41 0 44 0 0

T p v p , T p, T p,

T i v p , T v p .

       

        
  (4.10) 

The relations (4.8) and (4.9) supply with the values from (3.16) the above expressions. 

 

 

5. DISCUSSION OF THE MODEL 

 The pressure model is geometrically based on a pseudo-hypersphere with a time-
dependent radius and shows some interesting features. From the 'U-equation we have 

exploited the relation 1R . It follows 0R . The expansion of the universe is constant. 

We borrow from (3.4) 

 r sin R   (5.1) 

with the polar angle  of the pseudo-hyper sphere. If an observer does not perform a 

particular motion then is const.  . Differentiating  (5.1) leads to the Hubble law 

 
1

r r Hr R
R

. (5.2) 

At the equator  r  R  of the pseudo-hyper sphere one has r 1 R  or in physical 

units 

 v r c  , (5.3) 

wherein again the definition of the velocity (3.4) was considered. The expansion-related 
recession velocity of galaxies has the highest attainable value at the equator, the velocity 
of light. A galactic island formation is not possible in this model. The model has a horizon 
at 

 
Hr cT' . (5.4) 

No signal beyond the horizon can reach an observer situated at 0  . Since all points on 

the hypersphere are equivalent, each observer has his individual horizon at an arbitrary 
position in the universe. 

Further, we want to survey if the definition of the velocity 

 
dr

v r
dT '

   (5.5) 

(with the proper time T'  of the comoving observer) complies with the velocity definition of 
the theory of relativity. An observer in the non-comoving system identifies the radial 
velocity of a receding galaxy as 

 
1dx

v
dT

 . (5.6) 

Therein T is the observer's proper time. At any time during the expansion, the radial arc 
element is determined by the dS metric 

 
1 2 2dx dr, 1 a 1 cos 1 1 r        R . (5.7) 
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The proper time of the observer depends on the Lorentz relation 

 
dT

dT '
  . (5.8) 

The universe expands in free fall, the Lorentz factor  and the metric factor  are 

identical according to (3.7) and (5.7), so that 

 
dr

v r
dT '


 


  (5.9) 

proved to be the relative velocity of the observers and thus the recession velocity of the 
galaxies. 

Is noteworthy that these results are identical with those which Melia [5-7,9] derived 

from a model that he called 
hR ct  model2. However, Melia gains his relations from a flat 

FRW ansatz. In contrast, our pressure model is positively curved and closed. This has the 
advantage that the Olbers' paradox need not be concealed either or be explained away by 
expansion effects. The question remains whether both models are identical. We start our 
considerations with the dS model which is based on a pseudo-hyper sphere, and thus 
positively curved and closed. But according to the FRW classification the dS model is 

called flat  k 0 . It is quite possible that the FRW-classification of the Melia model does 

not make the correct statement. 

 

6. CONCLUSIONS 

 

We have elaborated the mathematical structure of a cosmological model which can 
be helpful in building a physically viable model. The model includes pressure and mass 
density. Relations with these quantities result from the exact solutions of Einstein's field 
equations. The cosmic horizon arises from the geometric structure of the model. The 
recession velocity of galaxies cannot exceed the velocity of light. There can be no galactic 
island formation. 

                                            

2
 Melia's expression agrees with (5.4). Melia's coordinate time t corresponds to the proper time of this 

system in the free-falling comoving system. This time is referred to by us as T '. 



 11 

7. REFERENCES 

 

[1] Burghardt R., Transformations in de Sitter and Lanczos models I.  

     http://arg.or.at/Wpdf/WTrans1.pdf 

[2] Burghardt R., Transformations in de Sitter and Lanczos models II.  

     http://arg.or.at/Wpdf/WTrans2.pdf 

[3] Florides P. S., The Robertson-Walker metrics expressible in static form. GRG 12, 563, 1980 

[4] Mitra A., When can an 'Expanding Universe' look 'Static' and vice versa:  

 A comprehensive study. Journ Math.Phys. D 24, 155003, 2015 

[5] Melia F., Proper size of the visible universe in FRW metrics with constant spacetime 

          curvature. astro-ph.CO/1207.1332 

[6] Melia F., Abdelqader M., The cosmological spacetime. astro-ph/09075394 

[7] Melia F., The cosmic horizon. astro-ph/07114181 

[8] Mitra A., Friedmann-Robertson-Walker metric in curvature coordinates and its application.  

          Grav. Cosmol. 19, 134, 2013 

[9] Melia F., Shevchuk A. S. H., The Rh=ct universe. Mon. Not. Roy. Astr. Soc. 419, 2579, 2012 

http://arg.or.at/Wpdf/WTrans1.pdf
http://arg.or.at/Wpdf/WTrans2.pdf

