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Abstract: We investigate the free fall in the Schwarzschild field and we calculate the time 
function for observers falling in from infinity or from an arbitrary finite position. We show 
that any observer can only reach the event horizon in infinite proper time. 
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1. INTRODUCTION 

 

In recent decades, the problem of free fall has repeatedly been treated in the 
literature. While general agreement exists that an observer who comes from infinity would 
reach the speed of light at the event horizon, there are controversial views regarding the 
speed of an infalling observer who falls from a finite position towards the center of 
gravitation. We attack the problem and we will show that an observer coming from infinity 
or from any other position would attain the speed of light at the event horizon and therefore 
will take an infinitely long proper time. To manage this problem one has to apply Einstein’s 
addition law of velocities and the velocity formula for the free fall in the Schwarzschild field. 
We [1,2,3]  have investigated this problem in some previous papers. 

 

2. THE FALL FROM THE INFINITE 

 

We are confronted with the actual problem that initially only the velocity of an 
observer B'' who comes from infinity is known. It is determined by the Schwarzschild 
geometry by 

 
2M

v v(r)
r

    (2.1) 

and therefore is a geometric quantity. To simplify the following consideration, we reduce 
the problem to a 2-dimensional one. We suppress the  - and  -dimensions and we 

denote the radial co-ordinate with x. 

The observer B" coming from the infinite does not change his position in the 
comoving system. Therefore, one has 

 
dx"

0, x " const.
dT ''

   , (2.2) 

where T" is the proper time of B". In view of the system B, which is in rest, his velocity is 

 
dx

v
dT

  , (2.3) 

where we now have used the proper time T of the static system. 

If we include the well-known relation 

 
dT

dT"
   (2.4) 

with  as the Lorentz factor of the transformation x x"  and if we take into account the 

relation dx dr  , we have 

 
dr 1

v , dT" dr
dT" v

   . (2.5) 

The integral of dT" 
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3r 1 2r

T"(r) dr
2M 3 M

     (2.6) 

is a well-known expression in the literature which graphically shows a curve being zero at 
r 0  and increasing to infinity for r  . It determines the time the observer has to take in 

order to reach a point r, starting at r 0 . Since there is invariance under time reversal, one 

obtains for the fall time a function that is infinitely high at r 0 . 

It is noticeable that the curve T"(r)  crosses the event horizon, although any 

incoming object would reach the speed of light at this location. The fall velocity 

v(r) 2M/r   is mathematically continued into the inner region 0 r 2M   of the 

Schwarzschild solution. Thus, it is mathematically quite correct that the integral (2.6) also 
covers the inner region. Due to our geometrical interpretation of the gravitation theory a 
penetration of the event horizon is not possible. The circle at the throat of Flamm's 
paraboloid is the boundary of the geometry and beneath it no statements can be made. 

This raises the question whether the integral (2.6) can be corrected in such a way 
that an observer incoming from infinity requires an infinitely long proper time to reach the 
event horizon. In fact, the problem can be solved easily, if one calculates the integral (2.6) 
within limits. From1 

 
r 3

2M

r 1 2r 1
T"(r) dr 4M

2M 3 M 3
    (2.7) 

one obtains the rise time for an observer from 2M to infinity, whereas 

 
r

T''(2M) 0, limT''(r)


    (2.8) 

is valid. Due to the invariance under time reversal, an observer who comes from the 
infinite reaches the event horizon only after infinite proper time. 

Since the event horizon is considered to be unreachable, neither for a falling 
observer nor for the surface of a collapsing stellar object, the existence of black holes is 
questioned. One might argue that the restriction of the integral (2.7) to the range 

 2M r    is arbitrary. To justify this practice, we calculate the problem once again with 

other variables viz with those variables that can easily be taken from the Schwarzschild 
geometry, but which are defined from the beginning above the event horizon. Furthermore, 
we extend the investigation to the case where the incoming object does not come from 
infinity, but from any finite position.  

The fall velocity of an object coming from infinity is a quantity closely associated 
with the Schwarzschild geometry. It is related to the angle of ascent of the Schwarzschild 
parabola by 

 v sin 2M/ r     . (2.9) 

By rearranging and differentiating this relation we obtain 

 
2 3

2M 4M
r , dr cos d

sin sin
    

 
 . (2.10) 

                                            
1
 For reasons of clarity we use here the value of the fall velocity. 
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The geometry at infinity is flat, because of 0   at this position. The tangent at the vertex 

of the Schwarzschild parabola is normal to r-axis, i.e. / 2   . From 

 
4

1 4M
dT" dr cos d

v sin
    


 (2.11) 

one obtains with the lower limit / 2  the function2 

   3

4M 4M
T"

3sin 3
  


 , (2.12) 

which describes the rise time. Due to the invariance under time reversal, one obtains the 
curve for the fall time. If the fall velocity is parameterized with the angle of ascent of the 
Schwarzschild parabola one obtains for the time function a curve starting with zero value 
at 0   and increasing to the infinite at the event horizon. The choice of this variable has 

the advantage that the spatial infinity can be represented graphically. The same applies to 
isotropic co-ordinates, which have been treated by us in a former paper [4] in more detail. 

From the nonlinear transformation 

 

2
M

r 1 r
2r

 
  
 

 (2.13) 

one obtains 

 
2

2

M
dr 1 dr

4r

 
  
 

 . (2.14) 

The new isotropic co-ordinate r  describes both branches of the Schwarzschild parabola, 
by running through them. It starts at r 0  at infinity on the lower branch of the parabola 
and runs into the infinite of the upper branch ( r  ). The co-ordinate has a minimum at 
r M/2  which corresponds to r 2M , the event horizon. Therefore isotropic co-ordinates 
describe only the outer region r 2M  of the Schwarzschild geometry, but in a twofold 

manner. The fall velocity is 

  
1 2M

v r
M r

1
2r

 



 . (2.15) 

Taking into account (2.5) together with (2.14) and (2.15) one arrives at 

 
3 2 2 3

3

8r 4Mr 2M r M r
dT" dr

8r 2M

  
   . (2.16) 

If we take the positive value of v for the sake of simplicity, the integral of (2.16) provides 
the function 

 
2 3

3

3

1 8 2M M
f(r) r 4M r

34 2M r 3 r

 
    

 
 . (2.17) 

Within the limits of the lower branch one has 

 
M

T"(r ) f(r ) f
2

 
   

 
 (2.18) 

                                            
2
 The first term is negative because   is negative. 
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with  
r 0
limT" r


   and 
M

T" 0
2

 
 

 
. Time symmetry attributes to the function for the fall 

time, which can be seen from Fig. 2.1 (M 2 ). 
 

 

Fig. 2.1 

One obtains the same results with Einstein-Rosen co-ordinates which we have 
treated in [2] and also with the Lorentz angle as parameter. The latter problem will be 
executed in Section 6. By using different variables, we have shown in this Section that an 
observer infalling from the infinite can reach the event horizon only after infinite proper 
time. Whether this also applies to objects coming from any finite position, will be examined 
in the following. 

 

3. FREE FALL FROM AN ARBITRARY POSITION 

 

The velocity of an observer who is infalling from an arbitrary position can be 
determined only circuitously. For this purpose, we perform the following considerations: 

An object coming from infinity has at an arbitrary position 
0r  the velocity 

0 0v 2M r   . Another object is released from 
0r  at the very moment the first object is 

passing the point 
0r . In this moment the difference of their fall velocity is simply 

0v . 

However, the difference decreases according to Einstein’s composition law of velocities. 
With regard to the static Schwarzschild system the speed of the second object is 
calculated with respect to the relative velocity of the first object 

  
0

0

0

2M 2M

r r
v ' v r, r

2M 2M
1

r r

 
    

  



 . (3.1) 

The latter is at the starting position  0 0v r , r 0 , at the event horizon  0v 2M, r 1  . 

Fig. 3.1 shows some examples. The top curve corresponds to the observer who comes 
from infinity. 
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Fig. 3.1. Velocities 

 

With these considerations, we have left behind the possibility that incoming objects 
can cross the Schwarzschild radius and the hypothesis of black holes. 

To handle the velocity relations we introduce three reference frames. The first is 
called B being in rest  in the Schwarzschild field, the second is the reference system B' 
which accompanies an observer with the velocity v ' , and the third B'' is coming in free fall 
from infinity with the velocity v. The systems are connected by the Lorentz relations 

 0 0
0

0 0

v v v ' v v v '
v ' , v , v

1 v v 1 v 'v 1 v v '

  
  

  
 , (3.2) 

      0 0 0 0 0' 1 vv , ' 1 v 'v , ' 1 v 'v               , (3.3) 

      0 0 0 0 0 0'v ' v v , v ' v ' v , v ' v v '              . (3.4) 

The quantities  are the Lorentz factors associated with the relative velocities. With the 

help of a table we provide other useful relations. 

The Lorentz transformations have the form 

 

1' 4 ' 1' 4 '

1 1 4 4

1'' 4 '' 1'' 4 ''

1' 0 1' 0 0 4 ' 0 0 4 ' 0

1'' 4 '' 1'' 4 ''

1 1 4 4

L ', L i ' v ', L i ' v ', L '

L , L i v , L i v , L

L , L i v, L i v, L

        

        

        

 . (3.5) 

For the table, we calculate the relative velocities and proper times of the above-mentioned 
three observers. The position of an observer coming from infinity does not change with 
respect to the comoving observer system. For B" one has x" const., dx" 0  .  

Next, we write 4" 4'dx idT", dx idT'  , where dT"  and dT'  are the proper times of 

the observers with respect to B" and B'.  From the Lorentz transformation 

1" 1'' 1' 1" 4' 4" 4'' 1' 4" 4'

1' 4' 1' 4'dx L dx L dx , dx L dx L dx     

we infer the relation 
0 0 00 dx' i v dT'     which leads to 

0

dx '
v

dT '
 . 
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I. x'' const.  

systems L transformations rel. velocities phys. time rel. vel. of meas. in 

1. B'' || B' L(v0) m'' m'' m'

m'dx L dx
 0

dx '
v

dT '
  

0

dT '

dT ''
   

B'' a .B' B' 

2. B'' || B L(v) m'' m'' m

mdx L dx  dx
v

dT
  

dT

dT ''
   

B'' a. B B 

3. B || B' L(v') m m m'

m'dx L dx  dx ''
0

dT ''
  

0

dT

dT'





 
  

II. x' const.  

systems L transformations rel. velocities phys. time rel. vel. of meas. in 

1. B' || B L(v') m' m' m

mdx L dx  dx
v '

dT
  dT

'
dT '

   
B' a. B B 

2. B' || B'' L(v0) m' m' m''

m''dx L dx  
0

dx ''
v

dT ''
   

0

dT ''

dT '
   

B' a. B'' B'' 

3. B'' || B L(v) m'' m'' m

mdx L dx  dx '
0

dT '
  0dT ''

dT '





 
  

III. x const.  

systems L transformations rel. velocities phys. time rel. vel. of meas. in 

1. B || B' L(v') m m m'

m'dx L dx  dx '
v '

dT '
   dT '

'
dT

   
B a. B' B' 

2. B || B'' L(v) m m m''

m''dx L dx  dx ''
v

dT ''
   

dT ''

dT
   

B a. B'' B'' 

3. B' || B'' L(v0) m' m' m''

m''dx L dx  dx
0

dT
  

dT ' '

dT ''





 
  

 

In addition, one has with 
0 0 0idT" i v dx' idT'     and with the result obtained above 

 2

0 0dT" v 1 dT'     

and finally 

0

dT '

dT"
  . 

Similar considerations can be made for all rows of the table and we obtain the 
elementary relations listed in it of which we frequently make use. With these relations and 
the velocity definition (3.1) we are prepared to study the free fall of objects falling from a 
finite position. 
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4. SCHWARZSCHILD STANDARD CO-ORDINATES 

 

In the preceding Sections we have examined the free fall from infinity in several 
respects. Let us now consider the more complicated case in which an observer can fall 
away from any position. In the last Section we have determined the required velocity 
definitions and we have prepared the essential mathematics. 

With the help of the table of Section 3, we refer to an observer B' who falls in from 

an arbitrary position 
0r , and we gather the relations 

 
dx dT

v ', ', x ' const.
dT dT '

     . (4.1) 

With dx dr   we write 

dr
'v '

dT '


   , 

and we bear in mind that the metric coefficient  is identical with the Lorentz factor of an 

observer incoming from the infinite. With (3.4) one has  

 
 0 0

1
dT' dr dr

'v ' v v


 
  

 . (4.2) 

The integration of this expression leads to an integral of the type 

 
x 1

x x
dx x 2 x 2ln(1 x), x 1, lim dx

x 1 x 1
      

 
   (4.3) 

and with 
0

r
x

r
  to the function 

   0
0 0 0

0

r r
f r,r 1 r 2 r r 2r ln 1

2M r

  
        

   

 (4.4) 

which describes the rise time, and which is infinite at 
0r . As an observer ascending from 

the event horizon cannot be realized physically, we will mirror the function. Substituting 

0r r r   into the function (4.4), we measure the instantaneous fall distance beginning at 

0r . With 
0 0r r 2M, r r 2M     we restrict the integration to the range  02M,r . Thus, we 

get from (4.4) a function which is plotted in Fig. 4.1. One can see that for the starting point 
and end point of the downward motion the relations 

    0 0 0 0
r 2M0|r rT' r r,r 2M 0, lim T' r r,r 2M


        (4.5) 

are valid. A freely falling observer can reach the event horizon only after an infinite proper 
time. 
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Fig. 4.1. Fall time 

In order to free ourselves from the suspicion that we have restricted the variable r 
arbitrarily in order to exclude the region r 2M , we carry out the same calculations again 

with other variables. We use variables which in principle cannot describe the inner region 
of the Schwarzschild geometry. 

 

5. CALCULATION WITH THE ANGLE OF ASCENT 

 

We extend the method discussed in Section 2, where we have used the angle of 
ascent of the Schwarzschild parabola as parameter. For an observer coming from the 
infinite, we use for the fall velocity the quantity (3.1). For the velocity of an observer who 

comes from infinity and has reached the position 
0r  we find the expression 

 0 0 0v sin 2M/r     , (5.1) 

where 
0  is a negative angle. 

If we insert this into (3.1) we have 

 0
0

0

sin sin
v ' v( , )

1 sin sin

  
   

  
 . (5.2) 

T' is the proper time of a freely falling observer who comes from a finite position. The 

Lorentz factor for the constant velocity 
0v  is 

 0
2

00

1 1

cos1 sin
  

 
 . (5.3)  

Then (4.2) becomes with (2.10) 

 0

3

0

cos 4M
dT' cos d

sin sin sin

  
    

    
 . (5.4) 
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To make the calculations clearer, we take the angle to be positive. In the region 
0,

2

 
   

 
 

we have 
0   . Integration leads to 

   0 2 2 3

0 0 0 0

1 1 1 sin
f 4Mcos ln

2sin sin sin sin sin sin sin

 
      

        
 . (5.5) 

Within the limits one has 

      
0

T' f f , T' 0, lim T'
2 2 

    
          

   
 (5.6) 

Time symmetry leads back to the previously developed results as shown in Fig. 5.1. 

 

 

Fig. 5.1. Fall time 

 

6. CALCULATION WITH THE LORENTZ ANGLE 

 

The velocity of an observer falling freely from infinity can be written as 

 v th    (6.1) 

as well. The Lorentz angle   is also called rapidity. For   one gets v 1  . For the 

Lorentz factor one has ch   . With 

i v i th ch ish sini , cosi               

we notice that with (6.1) a rotation through the angle i  is finally described, i.e. a pseudo-

rotation is applied. With 

  0 0
0

0 0

v v th th
v ' th

1 vv 1 th th

   
    

   
 (6.2) 

one obtains the simple relation 

  0 0th ' th ,      . (6.3) 
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In addition, one has from (2.1) 

3

4M
dr dv

v
   

and with (6.1) 

2

1
dv d

ch
  


 . 

One finally gets 

2

4M
dr d

sh th
  

 
 . 

With 

dT' dr
'v '





 

one obtains 

 
  2

0

4M 1
dT' d

sh sh th
 

    
 . (6.4) 

The integral yields 

  
 02

0 02

0

sh2M 1
f 2cth cth 2cth ln

sh sh sh

  
       

   
 . (6.5) 

For  , i. e., at the location r 2M , we obtain  

 0
0 0

0

cth
g 4M 1 cth

sh


   


 , 

so that we finally gain the time function 

        
0

T' f g, lim T' 0, lim T'
 

          . (6.6) 

Due to time reversal we obtain the fall time again. 
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7. CONCLUSIONS 

From the previous considerations conclusions can be drawn for the collapse of a 

star. If the surface of a stellar object is located at the position 
0r , and even if one assumes 

the highest possible speed of contraction, namely the free fall, the object can never 
contract to the event horizon, or even exceed it. This has far-reaching consequences for 
the theory of stellar collapse. Models that satisfy this condition have been proposed by 
Mitra [5]. 

We have shown that an observer in the Schwarzschild field infalling from infinity or 
from any other position can reach the event horizon only after infinite proper time. We have 
taken up a position in contrast to the current literature and we will show elsewhere how it 
can lead to different interpretations concerning the velocities and fall times of free fall. 
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