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Abstract: The Penrose metric is investigated, and it is shown that it cannot describe the 
inner region of the Schwarzschild model. It cannot represent a black hole. 

 

1. INTRODUCTION 

In a summary paper [1] Penrose1 presented a coordinate transformation that 
modifies the standard Schwarzschild metric allowing it to describe the inner region of the 
Schwarzschild model. In further papers [2-3], he refined this point of view. We demonstrate 
that this is not possible. We calculate the field strengths based on the metrical coefficients 
of the Penrose metric and show that the gravitational force tends to infinity when an 
observer approaches the event horizon at r 2M . Therefore, a penetration of the event 

horizon is not possible, even though the radial coordinate r of Penrose ranges from r 0  
to r . This prevents the formation of a black hole. 

 

2. THE PENROSE METRIC 

Penrose derived a new metric from the standard Schwarzschild metric using the 
coordinate transformation 

  t t ' r 2Mln r 2M , r r '      , (2.1) 

where  r,t  are the new coordinates, and  r ',t '  are the standard Schwarzschild 

coordinates. He noted that these had already been used by Eddington [4] and Finkelstein 
[5]. However, we must consider that the Penrose coordinates differ slightly from these2. 
The coordinate t is referred to as the advanced time coordinate. 

By differentiating (2.1), we get 

                                            

*
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1
 Penrose has received several prizes and awards, including the 2020 Nobel Prize in Physics for the 

discovery that black hole formation is a robust prediction of the general theory of relativity. 

2
 Finkelstein:  t t ' 2M ln r 2M   , Eddington:  t t ' 2M ln r M   . 
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 2dt dt ' dr, a 1 2M r, 1 a      , (2.2) 

and, finally, the Penrose metric 

 2 2 2 2 2ds 2drdt r d a dt    . (2.3) 

Here,   is the solid angle of the spherical Schwarzschild coordinate system. The form of 
the metric does not impose any condition on the variable r. This gives the impression that 
the metric can also describe the inner region of the Schwarzschild model. We see that the 
Penrose coordinate system is oblique-angled, i.e., the Penrose coordinates r and t are not 
orthogonal. 

From the line element (2.3), we read the metrical coefficients using the original 

Minkowski notation  4x i c t   
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  
. (2.4) 

From these, we extract the tetrads 
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e , e i , e a

e a, e i , e

     

    
. (2.5) 

They represent rods and clocks. They connect coordinate objects 
i  with measured 

values by i

m i
m
e   . The field strengths for the Penrose metric are calculated using the 

Ricci-rotation coefficients: 

 
s t t s t ts j sr j sr j j ' sr j ' sr j '

mn j nt j mt j j ' nt j ' mt j '
[n|m] [m| r ] [r|n] [n|m] [m| r ] [r|n]

A e e g g e e g g e e e e g g e e g g e e ....        . (2.6) 

The Ricci-rotation coefficients are invariant under coordinate transformations if the 
coordinate transformation is holonomic. Thus, we do not expect new coordinates to 
change the physical content of a model. Invariance under coordinate transformations is 
one of the basic principles of the theory of relativity and is equally indispensable for all 
physics. Mathematical details concerning the coordinate invariance of (2.6) can be found 
in the Mathematical Appendix. 

Remembering that is 
mn mng    in the tetrad formalism, we calculate a typical 

element of the Ricci-rotation coefficients using the Penrose metric and definitions (2.2): 
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Finally, we have the force of gravity 
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
. (2.7) 

It is not very surprising that we get the same expression for gravity that we calculate with 
the standard Schwarzschild coordinates. 

Evidently, for r 2M , we obtain E . This means that the event horizon at 

r 2M  is a physical singularity, while the standard Schwarzschild metric has a coordinate 

singularity at r 2M . The latter can be removed by a suitable coordinate transformation. 
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The fact that the variable r in the Penrose metric is regular everywhere does not prevent 
the gravitational force from diverging at the event horizon (Fig.1). 

  

Fig. 1. The gravitational force Fig. 2. Proper time of free fall  

There are other coordinate systems that are regular at r 2M . These include the 

coordinate systems of Einstein and Rosen and isotropic coordinates. They have the 
additional property that neither of them can describe the region r 2M  of the 

Schwarzschild model. We have outlined the possibility of using new coordinates in our 
paper [6]. 

The literature often overlooks the existence of a coordinate system that covers the 

whole space and is regular everywhere: the Cartesian coordinates  R,r of the flat 

embedding space of the Schwarzschild geometry. R is the coordinate of the 
extradimension, orthogonal to r. By implementing the Schwarzschild model in this space 
using the equation of Flamm's paraboloid 

  2R 8M r 2M  ,  

we must accept that the range of r is restricted to  r 2M,  , unless one allows the 

variable R to become imaginary. The equation above defines the geometry and leaves no 
need to search for a coordinate system that opens access to other regions in space. 
Moreover, the proper time of a free-falling observer approaching the event horizon 
diverges, as shown in Fig. 2. We have calculated this in our paper [7] and have explored 
the problem with various methods in [8]. Additionally, every observer in free fall 
asymptotically approaches the event horizon at the speed of light. We show this in Fig. 3. 
We addressed this problem in a talk in Berlin a few years ago, and a detailed discussion of 
this question can be found in the English translation of the paper in [9]. All in all, the event 
horizon marks the end of the exterior Schwarzschild geometry. 

 

Fig. 3. Free fall from arbitrary positions 
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Penrose wrote in his paper [1]: 

 “The observer … crosses freely from the r 2M  region into the 0 r 2M   region. 

He encounters r 2M  at a perfectly finite time, according to his own local clock, and he 

experiences nothing special at this point. … Let us consider another observer, however, 
who is situated far from the star. As we trace the light rays from his eye, back into the past 

towards the star, we find that they cannot cross into the r 2M  region after the star has 

collapsed through. … No matter how long the external observer waits, he can always (in 
principle) still see the surface of the star as it was just before it plunged through the 
Schwarzschild radius. In practice, however, he would soon see nothing of the star's 
surface – only a 'black hole' – since the observed intensity would die off exponentially, 
owing to an infinite red shift.” 

These considerations by Penrose do not align with the features of the exterior 
Schwarzschild solution which one obtains by careful calculations. In his textbook, Mitra 
[10] discussed the problems of the inner region of the Schwarzschild geometry in detail. 
Since the exterior Schwarzschild geometry ends at the event horizon, the question of how 
to fill the hole at the waist of Flamm's paraboloid arises. The answer was given by 
Schwarzschild in the year 1916. The interior Schwarzschild solution matches smoothly 
with the exterior Schwarzschild solution, and the first and second linking conditions are 
satisfied. The interior solution provides pressure and mass density; there is no reason to 
assume that our universe could be full of holes. 

Penrose also described what he believed was going on in the inner region of the 
Schwarzschild model: 

“As r  decreases, the space-time curvature mounts (in proportion to 3r ), becoming 

theoretically infinite at r 0 . … Thus, the true space-time singularity, resulting from a 

spherical symmetric collapse, is located not at r 2M , but at r 0 . Although the 

hypersurface r 2M  has, in the past, itself been frequently referred as the ’Schwarzschild 

singularity’, this is really a misunderstanding terminology… .” 

It is hard to understand that mass could be concentrated in a single point with 
infinite mass density and infinitely high curvature of space. In contrast, the collapse of the 
Schwarzschild interior [11] shows that the stellar object can only asymptotically contract to 

an object having a minimum radius of 
Hr 2.25M . At this location, the pressure at the 

center of the star would be infinite. Moreover, the surface of the star needs an infinitely 

long proper time to approach this inner horizon 
Hr . After some time, the collapse slows 

down to a quasi-static state of the object. Mitra called such a star an ECO (Eternally 
Collapsing Object). Such an object could be in the centers of galaxies, possessing ultra-
high density, and not emitting light due to the strong gravitational field; it would appear to 
be black. 

Fig. 4. shows the collapse of the interior Schwarzschild solution. This solution is 
geometrically represented by the cap of a sphere. This cap slides down the Schwarzschild 
parabola in such a way that the tangents of both the interior and exterior solutions 
coincide. The exterior solution remains unaffected by the collapse, as per the Birkhoff 
theorem. 
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Fig. 4. Collapse of the interior Schwarzschild solution  

A further remark of Penrose is: 

“Let us imagine a situation in which the collapse of a spherically symmetrical 
(nonrotating) star takes place and continues until the surface of the star approaches the 
Schwarzschild radius. So long as the star remains spherically symmetrical, its external 
field remains that given by the Schwarzschild metric. … It would seem that the surface of 

the star can never cross to within the r 2M  region. However, this is misleading. For 

suppose an observer were to follow the surface of the star in a rocket ship, down to  
r 2M . He would find (assuming that collapse does not differ significantly from free fall) 

that the total proper time that he would experience as elapsing, as he finds his way down 

to r 2M , is in fact finite.” 

Reading this, we get the impression that according to Penrose, the collapse of a 
star is solely a matter of the exterior Schwarzschild solution. However, we must bear in 
mind that any particle on the surface of a collapsing star follows the laws of an interior 
solution. 

In paper [3], Penrose noted that even deviations from spherical symmetry cannot 
prevent spacetime singularities from arising. Concerning collapse, he refers to the 
Oppenheimer and Snyder model. This model holds strong historical importance but cannot 
be used to explain a physically model relevant collapse, as it assumes pressureless 
Nature. A direct reference to collapsing models is absent in Penrose's work. 

 

3. CONLUSIONS 

The Penrose metric was derived from the standard Schwarzschild metric through a 
coordinate transformation with an advanced time coordinate. We demonstrated that this 
transformation – as well as any other coordinate transformation – does not alter the 
geometry, i.e., the physical content of the model. The coordinate singularity at r 2M  can 

be removed with a suitable coordinate transformation, but the physical singularity at 
r 2M  remains. 

This invalidates all of Penrose's speculations about singularities. The event horizon 
cannot be crossed, and no singularity emerges at r 0 , whether naked or dressed. There 
is also no room for trapped surfaces. The complete Schwarzschild theory, consisting of the 
interior and exterior Schwarzschild solutions, is regular everywhere, and the force of 
gravity is zero at the center of the star. When a stellar object collapses, it becomes an 
ECO. 
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4. MATHEMATICAL APPENDIX 

In this appendix, we demonstrate the invariance of the Ricci-rotation coefficients, 
which contain the physical quantities of the model, under a holonomic coordinate 
transformation. To achieve this, we use the transformation 

 
m m i i 'i ' i

i i ' i i '
m m

e e , e e    .  

Here, the   represent the transformation coefficients for the coordinates. The Ricci-
rotation coefficients, using the coordinate system i', are 

 
s t ts j ' sr j ' sr j '

mn j ' nt j ' mt j '
[n|m] [m| r ] [r|n]

A e e g g e e g g e e   .  

Applying the above coordinate transformation, we get 

 

ss j ' j sr j ' j sr j ' j

mn j ' j nt j mt j|r ] |n]|m][n| [m [r

ss t t t tj i j i jj sr j sr j i j ' sr j ' sr j '

j nt j mt j j ' [ j|i] nt j ' [ j|i] mt j ' [ j|i]
[n|m] [m|r ] [r|n] m n r m r n

A e e g g e g g e

e e g g e e g g e e e e e g g e e e g g e e e

          
         

        

. 

The condition for holonomy is 

 j ' j '

[ j |i] |[ j i]x 0   .  

Thus, the last three brackets in the above equation vanish. Applied to the Schwarzschild 
model, it is futile to search for a coordinate transformation that allows for the penetration of 
the event horizon. Furthermore, this proof is independent of the mathematical structure of 
any model. 
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