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Abstract. We re-investigate the Kruskal metric by invoking two geometrical principles: we 
interpret the curvature literally as the curvature of a surface embedded in a higher 
dimensional flat space and we introduce the time as an imaginary variable. As a 
consequence of these formal presumptions the Kruskal metric cannot describe the interior 
region but matches a Lorentz transformation in the tangent spaces of the surface. This 
transformation is responsible for the acceleration of the observers in the Schwarzschild 
field. We also investigate the expanding 3-surface following the accelerated observers and 
identify the second fundamental forms of this surface as tidal forces. 
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1. INTRODUCTION 

 

In a previous paper [1] we have shown the different ways one could interpret 
curvature of space, and we have pointed out the consequences for the gravitation theory 
by applying these different interpretations of curvature. 

We face the following different views on how to understand curvature: 

(I) Spaces have curvature, if they are non-Euclidean. The space is not curved, 
but the geometry, the curvature is determined by the metric. A higher 
dimensional flat space for embedding the four-dimensional world does not 
exist. This point of view has the advantage that one can treat solutions of the 
Einstein field equations also for cases where surfaces do not exist. 

(II) The geometry might be described by embedding. However, this is not 
necessary as the curvature can be expressed by the intrinsic properties of 
the 4-dimensional space. 

(III) The geometry is explained by embedding surfaces into a higher dimensional 
flat space. The main advantage of this method is that one can utilize the tools 
of differential geometry like Gauss and Codazzi equations, which could give 
some insight into the geometrical structure of the model. 

Whittaker in his textbook [2] has impressively formulated view (I) 

“Unhappily it has become important historically, for it has led to the creation of a 
terminology which is now so well established that we can never hope to change it, 
regrettable though it is, and which has been responsible for a great deal of popular 
misconception. The terminology in question is, that mathematicians apply the word 
‘curved’ to any space whose geometry is not Euclidean. It is an unfortunate custom, 
because curvature, in the sense of bending, is a meaningless term except when the space 
is immersed in another space, whereas the property of being non-Euclidean is an intrinsic 
property which has nothing to do with immersion. However, nothing can be done but to 
utter a warning that what mathematicians understand by the term ‘curvature’ is not what 
the word connotes in ordinary speech: what the mathematician means is simply that the 
relations between mutual distances of the points are different from the relations which 
obtain in Euclidean geometry. Curvature (in the mathematical sense) has nothing to do 
with the shape of the space – whether it is bent or not – but is defined solely by the metric, 
that is to say, the way in which distance is defined. It is not the space that is curved, but 
the geometry of the space.” 

We have shown in some former papers that view (III)  is very useful to describe the 
nature of gravitation. We have found new interior solutions by the use of the theory of 
surfaces and we have been able to explain the cosmological constant and the stress-
energy tensor of gravitational models with the help of the second fundamental forms of 
surfaces.  

There is another thing, where physicists are of different opinion, namely, how to 
implement the time into the metric. In flat space one can write the line element in two 
different ways 
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44ds dx dx dx dx , dx dt, g 1       , (1.1) 

 2 4 4 4

44ds dx dx dx dx , dx idt, g 1       . (1.2) 

The first method we call t-notation, the second it-notation. Misner, Thorne an Wheeler 
note in their textbook [3] „One sometime participant in special relativity will have to be put 
to the sword ‘x4=ict’ . This imaginary coordinate was invented to make the geometry of 
spacetime look formally as little different as possible from the geometry of Euclidean 
space; to make a Lorentz transformation look on  paper like a rotation; and to spare one 
the distinction that one otherwise is forced to make between quantities with upper indices 
(such as the components pμ of the energy-momentum vector) and quantities with lower 
indices (such as the components pμ of the energy-momentum 1-form). However, it is no 
kindness to be spared this latter distinction. Without it, one can not know whether a vector 
is meant or the very different geometric object that is a 1-form. Moreover, there is a 
significant difference between an angle on which everything depends periodically  (a 
rotation) and a parameter the increase of which gives rise to ever-growing momentum 
differences (the ‘velocity parameter’ of a Lorentz transformation). If the imaginary time-
coordinate hides from view the character of the geometric object dealt with and the nature 
of a parameter in the transformation, it also does something even more serious: it hides 
the completely different metric structure of ++++ geometry and -+++ geometry. In 
Euclidean geometry, when the distance between two points is zero, the two points must be 
the same point. In Lorentz-Minkowski geometry when the interval between two events is 
zero, one event may be on Earth and the other on a supernova in the galaxy M31, but their 
separation must be a null ray (peace of a light cone). The backward-pointing light cone at a 
given event contains all the events by which that event can be influenced. The forward-
pointing light cone contents all events that it can influence. The multitude of double light 
cones taking off from all the events of spacetime forms an interlocking causal structure. 
This structure makes the machinery of the physical world function as it does. If in a region 
where spacetime is flat, one can hide this structure from view by writing 

2 1 2 2 2 3 2 4 2( s) ( x ) ( x ) ( x ) ( x )         , with 4x ict , no one has discovered a way to 

make an imaginary coordinate work in the general curved spacetime manifold. If ‘ 4x ict ’ 
cannot be used there, it will not be used here.”  

In contrast to the last argument we have used the it-notation in former papers 
throughout and we have given a satisfactory explanation for the geometric meaning of this 
notation. In the Gödel and de Sitter models  the timelike line element can be written as  

 idt di R .  

This is the infinitesimal arc length of a pseudo circle on a pseudo sphere with radius R . 

For the Schwarzschild model we have successfully used 

 idt di   ,  

where ρ is the r-dependent curvature radius of the Schwarzschild parabola and di   the 

infinitesimal arc lengths of a family of pseudo circles. Moreover, one does not have to care 
for the sign of the time-like components of a tensor by dragging the indices. 

Applying both view (III) and the it-notation to the Kruskal metric one gets a different 
interpretation of the physics of this model. 
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2. THE LORENTZ TRANSFORMATION 

 

To begin with, we write down the Schwarzschild metric in Kruskal-Szekeres co-
ordinates 

  
r3

2 2 2 2 2 2 2 22M32M
ds e du dv r d r sin d

r



        , (2.1) 

where the new variables are defined by  

 

r r

4M 4Mr t r t
u 1e ch , v 1e sh

2M 4M 2M 4M
     (2.2) 

for r > 2M and 

 

r r

4M 4Mr t r t
u 1 e sh , v 1 e ch

2M 4M 2M 4M
     (2.3) 

for r < 2M. Introducing the angle 

 
t

4M
   (2.4) 

we go over to the it-notation by using trigonometric functions of an imaginary angle instead 
of hyperbolic functions. In addition, using view (III) we demand that the geometry is based 
on a surface as we have outlined in a previous paper [4]. As the surface has its boundary 
at r = 2M, one is not able to describe the inner region in the framework of surface theory. 
Thus, we have to search for another explanation for the sectors II an IV, described by  
(2.3). As we have already done in our paper [5], we extract the factor -1 from the roots of 
(2.3). In this way we force the range of the function to be r > 2M and we obtain the Kruskal 
metric in the form of 

  
2 22 2 1 4 2 2 2 2 2ds du du r d r sin d         , (2.5) 

 
r3

2 2M
32M

e
r



    (2.6) 

and the four Kruskal sectors 

       I 

1

4

u Ycosi

u Y sini

 

 
,   II    

1

4

u Ysin i

u Ycosi

 

  
 ,   III     

1

4

u Ycosi

u Ysini

  

  
  ,   IV    

1

4

u Y sini

u Ycosi

  

 
. (2.7) 
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Y is defined as 

  
r

4M
1 2M/r

Y r e , Y(2M) 0
2M/r


  . (2.8) 

The pseudo circles 
2 21 4 2u u Y   consist of four branches of hyperbolae of constant 

curvature and two null lines for r = 2M. Next, we relate a Lorentz transformation to (2.7). 
By differentiation of (2.7) and (2.8) for sector I we obtain 

 1 4du cosi dY Ysini di , du sini dY Ycosi di            (2.9) 

and multiplying with   we get the rotated vectors 

 1' 1 4 4' 1 4dx cosi dx sini dx , dx sini dx cosi dx        , (2.10) 

from which we can read the components of the Lorentz transformation 

 1' 1' 4' 4'

1 4 1 4L cosi , L sini , L sini , L cosi          (2.11) 

with the velocity parameter 

 Kv th   . (2.12) 

In (2.10) we have used the Schwarzschild standard expressions for the radial line 
element and the local time interval 

 1 41
dx dr, dx cos idt, cos 1 2M/r

cos
     


. (2.13) 

For sectors II and IV we obtain the velocity parameter for a tachyonic motion [6] 

  Kv cth  . (2.14) 

Since Lorentz transformations can be drawn as hyperbolae in pseudo-real 
representation the Kruskal diagram can be interpreted as a diagram for bradyonic and 
tachyonic Lorentz transformations. 
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3. THE TIDAL FORCES 

 

In our previous paper on the Kruskal metric [5] we have discussed the above problem 
in more detail and we also have investigated the field equations with the help of the [3+1] 
decomposition of spacetime. In this paper we analyze the forces acting on a Kruskal-
accelerated observer. We have outlined that the transition to the accelerated system does 
not alter the underlying geometry anyway. The Lorentz transformation accompanying the 
Kruskal co-ordinate transformation is a pseudo rotation in the tangent spaces of a 4-
surface. Now we envisage the expanding 3-surface following an observer on his way, 
being accelerated outwards. We derive the forces acting on him with the method of the 
second fundamental forms of the 3-surface. We proceed in a way similar to that in which 
we have treated freely falling observers in the Schwarzschild field [7]. 

Transforming the covariant derivatives from Schwarzschild static system to the 
Kruskal reference system we have 

 m n s' s' s' s' s

m'||n' m'n' m ||n m'|n' n'm' s' n'm' s' n'm' s m'|n 'L A L , L L L          . (3.1) 

Calculating the Lorentz term L with 

 
1' 1 4 4' 1 4cosi sini , sini cosi           (3.2) 

we obtain 

 
 

s' s ' s '

m'n' m'n' m' n' m'n' m' n' m' n' m' n' m' n'

n' n'

L h K h K , h 'm 'm 'u 'u m m u u

1 1
K m cosi ,0,0,sini

4Ma 4Ma

     

   
 , (3.3) 

wherein the radial and time-like unit vectors of the Kruskal system are 

    n' m''m 1,0,0,0 , 'u 0,0,0,1   (3.4) 

and the unit vectors of the static system measured by the Kruskal observers 

    n' m'm cosi ,0,0,sini u sini ,0,0,cosi       . (3.5) 

The decomposition of the Ricci rotation-coefficients leads us to a set of field strengths  
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m'

m'

m'

a a
B cosi ,0,0, sini

r r

a 1 a
C cosi , cot ,0, sini

r r r

1 v 1 v
E cosi ,0,0, sini

a a

 
   
 

 
    
 

 
   

  

 , (3.6) 

describing the static system, but with the values measured in the accelerated system. The 
Lorentz term is incorporated in the graded derivative 

 
1

s ' s ' s ' s

m' || n ' m '|n ' n 'm ' s ' n 'm ' s m'|n 'L , L L L       . (3.7) 

The definitions for the graded covariant derivatives and more on this technique one can 
find in our papers cited below.  The field equations for these quantities are 

 

22

3 3

4 4

2 3 4

r ' r '

n 'm' m' ||n ' m' n ' m' n ' ||r ' r '

r ' r '

m'||n ' m' n ' m' n ' || r ' r '

r ' r '

m'||n ' m' n ' m' n ' ' r '|| r

[m' ||n '] [m' ||n '] [m'||n ']

R B B B b b B B B

C C C c c C C C

E E E u u E E E 0

B 0, C 0, E 0

   
    

      

   
   
      

   
    
      

  

 . (3.8) 

To obtain the equations for the forces acting on the accelerated observers one has to start 
with the Ricci 

 

s' s ' r ' s '

m'n' m'n' s ' n' | m' r 'm' s 'n' m'n' s '|

s ' n m s' s s'

n'm' n'm's nm n'm'

R 'A 'A 'A 'A 'A 'A

'A L A L

   

 
 . (3.9) 

Re-arranging the time-like part of the connexion coefficients 

 s' s' s'

m'n' m'n' m' n'E h E h E   , (3.10) 

we obtain by contraction of this quantity and with (3.3) the effective Kruskal force 

 e

m' m' m'K K E   . (3.11) 

Separating all time-like parts from the connexion coefficients we get the second 
fundamental forms of the expanding 3-surface 
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 1' 1' e

1'1' 1' 4 ' 1' 4 ' 4 ' 2 ' 2 ' 4 ' 3 '3 ' 4 '

a a
Q A L K , Q B sini , Q C sini

r r
           . (3.12) 

The first expression contains a dynamical contribution due to the Lorentz transformation. 
The Q’s are the tidal forces acting on the accelerated system. Dropping the primes of the 
indices we write for the connexion coefficients 

 s s s s

mn mn m n mnA *A Q 'u Q 'u    . (3.13) 

We obtain the [3+1] decomposition of the Ricci with respect to the accelerated system 

 

2 2

3 3

4 4

s s

mn n m n m m n s s

s s

n m n m m n s s

e e e s s e

n m n m m n e s e s

s r

mn|s mn r

s r s e

m n|s sn r n 22

R *B *B *B b b *B *B *B

*C *C *C c c *C *C *C

*K *K *K 'u 'u *K *K *K

Q 'u Q Q

'u *B 'u *B Q *K Q 'u

 

 

 

       
      

      
      

      
      

   

     

4 4

s r s e

m n|s sn r n 33

s s

n s m m s

s r rs

m n s |r rs

*C 'u *C Q *K Q

'u Q Q

'u 'u Q 'u Q Q 0

 

   

  
  

    

. (3.14) 

All quantities with an asterisk are 3-dimensional quantities and underlined indices are 
space-like. The graded ‘hat-derivative’ is constructed in analogy to the ‘double-stroke 
derivative’ by the use of the space-like connexion coefficients *A. Evidently, the contracted 
Codazzi equation 

 
4

s

[s m]Q 0


  (3.15) 

decouples from the field equations. 

We have shown that the Kruskal metric describes the same surface as the 
Schwarzschild metric in standard Schwarzschild co-ordinates. However, the Kruskal metric 
gives us the hint to investigate a reference system naturally connected with the Kruskal co-
ordinate system. Thus, an additional structure is implemented on the surface giving raise 
to new forces, the acceleration and the tidal forces. The price to pay is that we have to 
dismiss all speculations on black holes and the possibility of an observer passing the event 
horizon. 
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