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1. INTRODUCTION 

 

A fundamental principle of Einstein's theory of relativity is the independence of 
physical statements from a particular coordinate system. In principle, a coordinate system 
can be chosen arbitrarily, but it must be adapted to the physical situation in such a way 
that the calculation of a model is as simple as possible. Nevertheless, different coordinate 
systems are considered for the Schwarzschild model. This is done in the hope of gaining 
new insights, mainly to find a way to penetrate the event horizon. Also in cosmology, two 
different coordinate systems are used; one that comoves with the expansion of the 
cosmos and one that does not. 

We will show that new coordinate systems are obsolete because they do not 
change the physical facts of the model and that a Lorentz transformation can be 
associated with them that describes a new state of motion of the observers. To find out 
what is left of the physics after a coordinate transformation, we use tetrads, i.e., local 
orthogonal 4-bein vectors representing rods and clocks. These are used to measure 
physical and geometric quantities. Tetrads and quantities are parallel-transported in the 
curved space with the help of Ricci-rotation coefficients. The use of the original Minkowski 

notation  4x i c t  is mandatory. We also reject the use of Christoffel symbols. They are 

highly coordinate-dependent and lead to mathematical artifacts. In the following sections, 
we focus mainly on the Schwarzschild model, but we also make some comments on the 
cosmological models. 

 

2. THE SCHWARZSCHILD PROBLEM 

We recall that the solution, proposed by Schwarzschild for the field of a non-rotating 
mass is not given in its original form today, but in Hilbert’s notation. The line elements of 
both representations differ in the choice of the coordinate system. Both metrics can be 
written in the form 

 
2 2 2 2 2 2 2 21 2M

ds dr r d r sin d 1 dt
2M r

1
r

 
        

 

. (2.1) 

However, in the original form of the Schwarzschild metric, r has the following 
meaning 

 3 3 3r r 2M


  , (2.2) 

whereby the radial coordinate is defined by 
' 'r x x 


 , wherein 'x  are Cartesian 

coordinates in the embedding space. r 0

  determines the origin of the coordinate 

system. At this point one has r 2M , and the radial arc element is singular. Thus, the 

singularity occurs at the origin of the original Schwarzschild coordinate system and (2.1) is 
interpreted as the metric of a mass point. We are looking at the lateral arc element related 

to the polar angle  . Substituting (2.2) into (2.1), we get 3 33 r 2M d

  . We note that for this 

arc element, the expression 2Md is valid at the location r 0

 . Therefore, a radius 2M  

must be assigned to a mass point. This is a discrepancy that can be corrected using the 
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Hilbert form of the metric. In this case, r 0  is the origin of the coordinate system. A 

singularity occurs at r 2M  and this location is called the event horizon. 

We recall that Droste [1] also found a metric describing the Schwarzschild field and 
Gullstrand [2] presented a more general metric for a spherically symmetric system, which 
can be reduced to 

 
 2 2 2 2 2 2 2 2ds dr r d sin d 2iv dr idt a dt

v 2M / r, a 1 1 2M / r

       

     
. (2.3) 

Painlevé [3] found this metric independently of Gullstrand. Obviously, the coordinate 
system used is oblique-angled. The time coordinate is not orthogonal to the space and, 
thus, is unphysical. Nevertheless, orthogonal tetrads can be read from (2.3) in two ways 
(Mathematical Appendix, formulae A1 and A2). 

Using the Ricci-rotation coefficients, one obtains from (A1) the same field quantities 
that one would obtain from the Hilbert form of the metric (2.1). From (A2) one gets the field 
quantities for a freely falling system. We will revisit this problem later. 

The calculations would be easier if the time coordinate was changed with 

 2dt dt ' vdr  .  

With this transformation, one retrieves the metric in the form (2.1). It turns out that the 
Gullstrand-Painlevé coordinates are obsolete. More on this topic can be found in our 
booklet [4].  

Of interest is a coordinate transformation by Lemaître [5] 

  

2

3
3

2M
1

3 rr 2M r ' t ' , t '' t 2 2Mr 2Mln
2 2M

1
r


 

     
 



. (2.4) 

When introducing a new quantity1 

     3 23
r ',t ' r ' t ' , r 2M

2
  R R , (2.5) 

with the familiar definition of the velocity of free fall in the Schwarzschild field v 2M/r   

one obtains the Lemaître metric 

  2 2 2 2 2 2 2 2 2ds v r ',t ' dr ' d sin d dt '        R R . (2.6) 

The spatial coefficients of this metric have a time-dependent factor. Thus, the coordinate 
system shrinks in the direction of the field producing mass. The lapse function of the 
Lemaître metric is 1. Thus, the coordinate time t '  is also the proper time and a universal 
time for all observers. Obviously, the velocity of a free-falling observer at the event horizon 
is v 1 , the velocity of light in natural coordinates. 

                                            

 

1
 The new quantity R  can be interpreted geometrically. If one extends the curvature vector of the 

Schwarzschild parabola to its guideline, the distance R  between the guideline and the Schwarzschild 

parabola is cut out. For r 2M  also is 2MR  and R  is the radius of the circle at the waist of the 

Schwarzschild parabola. 
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In [4], we explicitly gave the transformation coefficients for a transformation from 
standard Schwarzschild coordinates to Lemaître coordinates. Further, we can read the 
tetrads from the Lemaître metric and calculate the field quantities. It is possible to 

associate a Lorentz transformation  , i v,i v,     with the Lemaître coordinate 

transformation. With this and the help of the inhomogeneous transformation law of the 
Ricci-rotation coefficients, we transform the Schwarzschild field quantities into the 
Lemaître field quantities. 

Since the lapse function of the metric (2.6) is constant, no force of gravity can be 
derived from it. This is consistent with Einstein’s elevator principle: freely falling observers 
cannot observe gravity. It should be noted that tidal forces [6] act on observers in all 
directions of space. Using the tetrad method, it is easy to show how the components of the 
4-vectors derived from the Ricci-rotation coefficients are relocated under the influence of 
the Lorentz transformation 

    m 1 m 4U U ,0,0,0 U 0,0,0,U   . (2.7) 

1U  refers to the force of gravity, and 
4U  refers to the tidal forces. The left side of (2.7) 

refers to the standard Schwarzschild representation and the right side refers to the 
Lemaître representation. We addressed the problem of free fall in [7] and extended the 
problem to free fall from an arbitrary position in [8]. 

Although the Lemaître coordinate system is obsolete for describing Nature, it has 
some interesting features. Rewriting the standard Schwarzschild metric by introducing the 
angle of ascent   with orientation cw [4]: 

 r sin , v sin , a cos     R , (2.8) 

one can write (2.1) in the canonical form 

 2 2 2 2 2 2 2 2 2

2

2

1
ds dr r d r sin d a dt

r
1

      


R

. (2.9) 

In cosmology, one classifies the metric with the curvature parameter k, writing for the 
radial coefficient 

 
2

2

1

r
1 k

R

.  

A metric with  k 1,0, 1   should describe a positively curved, flat, or negatively 

curved space. When applied to the Schwarzschild metric, we find that k 1  for the static 
case but k 0  for the case of free fall. Here, k 0  does not mean that the space is flat. 
The geometrized basis of the model is still the Schwarzschild parabola. The Lorentz 
transformation to the Lemaître form of the metric does not change the curvature of space; 
it rotates the tetrads on the space. Therefore, we prefer to call k the form parameter of the 
metric. 

The static coordinate system (2.1) is singular at r 2M . This singularity can be 

removed by an appropriate coordinate transformation. But some remarkable properties of 
the model remain at the event horizon and cannot be changed by any coordinate 
transformation: for instance the velocity of an infalling observer reaches the velocity of 
light, and the force of gravity becomes infinite. 
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Next, we consider the Einstein-Rosen coordinates [9] introduced by the authors ln 

[10]. Starting with the Schwarzschild parabola  2R 8M r 2M  , we substitute

2 2R 16M
r

8M


  into (2.1). Thus, for the Schwarzschild metric we get 

  
2

2 2 2 2 2
2 2 2 2 2 2

2 2 2

R 16M R 16M R
ds dR d sin d dt

16M 8M R 16M

  
       

 
. (2.10) 

Here, R is the coordinate of the extra dimension in the flat embedding space and R 0  

corresponds to r 2M  and denotes the event horizon. Note that the Einstein-Rosen 

coordinates cannot describe the interior region r 2M  of the Schwarzschild model and all 

attempts to cross the event horizon fail. 

Einstein and Rosen also considered the negative branch of the Schwarzschild 
parabola. The location R 0  is called Einstein-Rosen Bridge, which connects the two 

regions R . This gave rise to the speculation that the bridge could connect distant regions 

of the universe or could be an entrance to parallel universes. Wormholes occupy a large 
place in scientific and Sci-Fi literature. We recall that the force of gravity blows up at the 
bridge. Also, it takes an infinitely long proper time for any object to reach the bridge. In the 
Mathematical Appendix we considered the free fall from an arbitrary position and 
calculated the proper fall time diverging at R 0  in Einstein-Rosen coordinates. 

Other coordinate systems that cannot describe the interior of the Schwarzschild 
metric are isotropic coordinate systems. We studied them in [4,11]. Using the regular 
nonlinear transformation 

 

2
M

r 1 r
2r

 
  
 

, (2.11) 

where r is the radial Schwarzschild standard coordinate, one obtains the line element of 
the form 

  

2

4

2 2 2 2 2 2 2 2

M
1

M 2rds 1 dr r d r sin d dt
M2r

1
2r

 
  

          
   

 

 (2.12) 

in isotropic coordinates, which are valid for all r  of 0 r   . The metric is regular 

everywhere throughout this range. The function  r r  has a minimum at the event horizon 

Hr M 2  corresponding to r 2M . The region 0 r 2M   is excluded, from the outset, by 

isotropic coordinates. More informatiion on this subject, can be found in the Mathematical 
Appendix. The evaluation of the field quantities, leads to the well-known standard 
Schwarzschild expressions, formulated in isotropic coordinates [11]. 

Eddington [12] and, later on, Finkelstein [13] introduced a new coordinate system 

which is free of singularities. The transformations with Eddington coordinates  r,t  and 

standard Schwarzschild coordinates  r ',t ' , 

 
2M 2M

dt dt ' dr ', dt dt ' dr ', r r '
r 2M r 2M

    
 

 (2.13) 

lead to the singularity-free form of the metric 
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  
22 2 2 2 2 2 2 2 2 2 2ds dr dt v dr dt d , d r d r sin d            . (2.14) 

Here, v 2M/ r  is the velocity of a freely falling observer. It is not surprising that the 

transformation (2.11) produces a metric free of singularities, because the transformation 
itself has a singularity at r 2M . This is seldom mentioned in the literature. The integration 

of (2.13) gives 

  t t ' 2M ln r 2M   . (2.15) 

The expression diverges at r 2M . 

The metric (2.14) can also be written in the form 

  2 2 2 2 2 2ds 1 v dr 2v dr dt a dt    . (2.16) 

It is not symmetric under time reversal, even though, Einstein’s field equations have this 
symmetry. It also has a cross term, which indicates an oblique-angled coordinate system. 
We can write the metric inthe form 

  
2

2 2 2 2ds dr iadt i v dr     . (2.17) 

In the Appendix, we have noted the 4-bein associated with this metric and also the 
transformation matrix to the Schwarzschild system, ready for the calculation of the field 
quantities and field equations. We, again, get the familiar structure of the Schwarzschild 
model. 

Kruskal [14] and Szekeres [15] published a coordinate system covering four 
sectors of space. Many researchers thought that these coordinates could be used to 
inspect the interior region of the Schwarzschild model. The Kruskal metric 

  
r3

2 22 2 1 4 2 2 2 2 2 2 2M
32M

ds du du r d r sin d , e
r



           (2.18) 

is illustrated by the well-known Kruskal diagram. Two of the four sectors describe the 
conventional Schwarzschild theory; the other two are interpreted as a Black Hole or a 
white hole. However, we have shown in papers [16,17] that nothing new is gained by 
introducing the Kruskal coordinates. The coordinate transformation is associated with a 

Lorentz transformation with  cosi , sini , sini , cosi     , and from this, we extract the 

velocities v th   and v cth   for sectors I, III and II, IV respectively. The latter is 

tachyonic. The expressions for the outgoing observer are obtained from the incoming 

observer, by time reversal, via the Lorentz angle  . Here, t 4M   is the scaled 

coordinate time (rapidity). In the Appendix (Fig. A3), we have shown the time course of the 
two velocities concerning the tachyonic and bradyonic sectors. 

Since the Kruskal velocities are not constant, accelerations occur. The associated 
forces have to be subtracted from or added to the gravitational force depending on looking 
at an outgoing or incoming observer. The situation was illustrated in [4] and the field 
quantities were discussed in detail. It was shown that falling below the event horizon is not 
possible. 

Markley [18] used the transformation to isothermal coordinates 

  
r(r ) 2M

r r 2Mln
a 2M

 
   

 
,  

where a is a constant. He obtained the metric 
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  2 2 2 2 2 2 2 22M
ds 1 dr dt r (r )d r (r )sin d

r(r )

 
        
 

.  (2.19) 

The new radial coordinate r  passes through the interval  [ , ]  where the 

standard Schwarzschild coordinate passes through the range  2M, . The relation 

between the two coordinates can be seen in Fig. A4 of the Appendix. By evaluating the 
tetrads from (2.19), one obtains the well-known expressions for the Schwarzschild field 
equations. 

Misner, Thorne, and Wheeler (MTW) calculated the free fall of an object falling 
from an arbitrary position in their textbook [19]. Unfortunately, the erroneous results of 
these calculations greatly influenced the development of physics. Apparently, it was the 
authority of these three researchers that prevented people from re-examining the problem. 
The authors note that a freely falling object asymptotically approaches the event horizon 
as seen from an observer at infinity, while a comoving observer crosses the horizon after a 
relatively short time. This is worse than with Schrödinger's cat. For one observer it lives 
forever, but for the other, it dies quickly. 

Using Ockham’s razor, at least four pages of MTW are reduced to five lines giving 
the same results. But the short representation shows the error: the proper length 
measured by an observer falling from a finite position, has been combined by MTW with 
the proper time of an observer coming from infinity. So they got2 

 2 2 2ds dx' dT''  .  

We addressed this problem in a talk in Berlin a few years ago. An illustration of this 
can be found in the English translation of the paper in [20]. There, the MTW method is 
compared with the strictly relativistic one. 

The formulae, resulting from the MTW approach, contradict the basic formulae of 
the theory of relativity. As an example, we give the relation for the velocity of free fall as 

 
2 2

0

2

0

v v
v '

1 v





.  

Here, v is the velocity of an observer coming from infinity, 
0v  is the velocity he would have 

at the starting position 
0r , and v '  is its fall velocity. This relation clearly deviates from 

Einstein's addition law of velocities. 

Special polar coordinates can be used to describe the exterior Schwarzschild 
solution. According to Kasner and Eisenhart it is generally accepted that one needs six 
dimensions to embed the Schwarzschild metric into a flat space. This raises the question 
of how a model of embedding class 2 can be linked to the interior solution, which is 
certainly of embedding class 1. We have shown in [4] that five dimensions are sufficient to 
embed the Schwarzschild exterior solution in a flat space. 

We relate a pseudo-spherical coordinate system to a 5-dimensional Cartesian 

coordinate system a'x , a' 0',1',...4'  as given in Eq. (A6). A 4-dimensional hypersphere 

has the form a' 2

a'x x X  with radius X. If we shift the center of the sphere to x , we have 

                                            

 

2
 This is like substituting the sides a and b of two different triangles into the Pythagorean theorem 

2 2 2
a b c  , resulting in an ominous c. 
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 a a 2

a a(x x )(x x ) X
 

    .  

By suppressing all dimensions, except the extra dimension 0'x R  and 1'x r , we can 
unfold this equation into the two separate equations [4] 

 

3

2 2 2 r
R 8M(r 2M), R 2M

M 3

 
    

 
. (2.20) 

These are the expressions for the Schwarzschild parabola  R,r and Neil’s parabola  

 R, r . The latter is the evolute of the Schwarzschild parabola and the Schwarzschild 

parabola is the associated evolvente. 

Both curves are connected by the curvature vector of the Schwarzschild parabola. 
This vector is tangent to Neil's parabola and normal to Schwarzschild’s parabola. While the 
tip of the curvature vector moves along the Schwarzschild parabola, the starting point 
moves along Neil's parabola. Both motions contribute to the structure of its model. These 
are calculated and illustrated in detail in [4]. The starting point of the curvature vector is 
called the pole. Thus, we have introduced a polar system with a pole that is not fixed but 
moves on Neil's parabola. This gives an additional degree of freedom, which might be the 
reason for the requirement for a sixth dimension. The polar coordinate system is depicted 
in Fig. A5. One of the parallel evolventes is the Schwarzschild parabola. With the help of 

(2.20), one can eliminate R and R  and, thus, prepare the dimensional reduction. In 

addition, by using r 3r , one arrives at a 4-dimensional theory. 

Since the Schwarzschild field can be geometrized, i.e., represented as a 
perceivable surface, we can use the curvatures of the slices of this surface to formulate 
the metric on this surface: 

 2 i k

i kds d d , i k       (2.21) 

with the curvature radii and angles as follows: 

 

3

1 2 3 4

1 2 3 4

2r
, r, r sin , cos

M

, , , i

            

           

. (2.22) 

The metric, written out in full, is as follows: 

 2 2 2 2 2 2 2 2 2 2 2ds d r d r sin d cos di          . (2.23) 

More about this problem can be found in [4]. 

The 5-dimensional field equations consist of a set of subequations. These are the 

curvature equations of the slices of the surface and are of the type 
2

d 1 1
0

dr r r
  . In turn, if 

the surface is the basis of a model and one sets up the curvature equations of the slices, 
one can combine them to the Ricci. Finally, one obtains the Einstein tensor. By performing 
the dimensional reduction, one obtains Einstein's field equations and the associated metric 
without solving the differential equation given by the Einstein tensor. 

Evidently, this special coordinate system cannot describe the region below r 2M . 

The metric (2.23) is free of singularities but the field quantities derived from this metric 
have the aforementioned physical properties at the event horizon. 

The metric of the interior Schwarzschild solution, with Schwarzschild’s original 
form of the metric, is as follows: 
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2

2 2 2 2 2 2 2 2 2 2 2

g

1
ds d sin d sin sin d 3cos cos dt

4
              R R R .  (2.24) 

Since the value of  is bounded, the spacelike part of the metric describes a cap of a 

sphere of radius R . 
gr  and 

g  are the values at the boundary to the exterior solution. 

Some authors have reformulated the original Schwarzschild metric by replacing variables 

in the line element with 2 2sin r , cos 1 r    R R . They obtained the lapse function  

 

2
2

3

g

1 2Mr 2M
3 1 1

4 r r

 
   

  

. (2.25) 

This notation may be more familiar to some authors, but it blocks the way to a 
geometric interpretation of the lapse function. However, we keep the Schwarzschild 

notation and replace idt  by 
gdi  . At the boundary 

g  , the time-like part of the metric  

(2.24) becomes 
gdi   and coincides with the time-like part of the exterior solution. Thus, 

the 1st linking condition is satisfied. Application of Flamm's relation3 

 2  R , (2.26) 

one has 
gdi 2 di   R  and finally, one obtains the time-like part of the metric 

 4

gdx 3 cos di cos di    R R , (2.27) 

thus, the differences of two pseudo-circles4 with radii 
g3 cosR  and cosR . The time 

corresponds to the growth of a pseudo-annulus sector. 

Two linking conditions must be satisfied to match the interior and exterior solutions. 
The metrical coefficients and the tangents5 (cutting tangents) must coincide at the 
boundary surface. We have shown this in detail in [21]. 

Schwarzschild also provides the pressure function. He states that the pressure at 
the center becomes infinite as the stellar object shrinks to 

 
Hr 2.25M 2M  . (2.28) 

No star described by the Schwarzschild solution can be smaller than 
Hr . Thus, the inner 

horizon 
Hr  covers the event horizon and degrades it to a mathematical artifact. This will be 

significant when we consider the collapse of a stellar object. 

Black Holes are thought to be the final fate of collapsing stars. By redefining the 
variables, the exterior Schwarzschild solution is extended to the interior region. The matter 
is concentrated in a single point after a collapse. There, the matter has infinite density and 
space infinite curvature. This singular point is surrounded by empty space and shielded by 
the event horizon. But it is generally accepted that the exterior Schwarzschild field is 

                                            

 

3
 Flamm's relation is little known in the literature, likely, because the paper was written in German. 

4
 Pseudocircles are open and have the same curvature everywhere, even at infinity 

5
 When we wrote our booklet [4], we were of the opinion that common tangents are generally used for the 2

nd
 

linking condition. Later on, we found in the literature linking conditions stemming from O’Brien and Synge, 
and from Lichnerowicz. These do not hold for the Schwarzschild model. We argue that they do not apply to 
models that can be geometrized. 
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generated by a stellar object of mass M. If one extends the exterior solution into the 
region, where the stellar object is located, then the question 'where has this object gone to' 
arises. 

We recapitulate the properties of the complete Schwarzschild solution consisting of 
the interior and exterior solution [4]: The gravitational force inside the star is regular 
everywhere, and in the center of the star, it is zero. The interior solution always covers the 
event horizon of the exterior solution. Thus, the event horizon can never be experienced 
and all considerations, which refer to an exotic situation at this location, are obsolete. In 
particular, any attempt to extend the exterior Schwarzschild solution below the event 
horizon by a new choice of the coordinates or to allow a motion into this region is excluded 
by the structure of the model. Stars can collapse to ultra-massive objects. They can never 
shrink to a point singularity with infinitely high space curvature and mass density. 

There are no unpleasant peculiarities in the complete Schwarzschild model. It 
satisfies all the prerequisites that one would expect from a field theory. 

 

3. GRAVITATIONAL COLLAPSE 

In the previous section, we already considered the collapse of a star. This problem 
has attracted great interest among researchers and many papers have appeared on the 
subject. In one of our papers [22] we gave an overview of the problem and added some 
remarks to some papers. In many of these articles, it was assumed that the collapsing 
object is surrounded by a Schwarzschild field, which is known to have an event horizon. 
As we have shown above, this event horizon cannot be reached and certainly not crossed. 
Nevertheless, many authors believe that the final state of a collapse is a singularity at 
r 0 . This means that a Black Hole can be created, which could be naked, i.e., the 
enclosing event horizon could be absent. 

We also noticed that sometimes the stress-energy-momentum tensor is extended. 
This means that in addition to pressure and mass density, shear, viscosity, and heat flow 
are also taken into account. Einstein's field equations are then solved under these 
conditions. Not very surprisingly, some quantities or functions remain undetermined in the 
solution. One then tries to assign appropriate values to these quantities to give the model 
physical content. Occasionally, the solutions are made plausible with the help diagrams or 
tables. These solutions are not exact solutions of Einstein's field equations – although it is 
sometimes claimed that they are exact. By assuming additional quantities in the stress-
energy-momentum tensor, the field equations turn out to be underdetermining. We believe 
that Nature does not favor such solutions. 

The correct procedure would be to compute the Einstein tensor from a metric, and 
then compute the stress-energy-momentum tensor. In the case of the above-mentioned 
methods, however, the opposite approach was used. One specifies the right-hand side of 
Einstein's field equations and then sees what happens with the left-hand side, taking into 
account the applied metric. Since the reverse approach is used here, we call such models 
retro models. 

Some authors start with a collapsing metric. This might be a fuzzy communication 
for specifying a metric to describe a collapse. But if 'collapsing metric' is taken literally, i.e., 
if one assumes a structure in this metric that explains a collapse, then the knowledge of 
Gauss is ignored: A line element can only describe the curvature of a surface but not the 
change of the curvature. For the latter, we need another system of differential equations, 
i.e., the Bianchi identities. The resulting conservation laws lead to a relation that defines 
the time-dependence of the metrical quantities. To describe a collapse that does not 
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violate the laws of relativity and does not lead to any singularity, we turn the clock back to 
1916. Knowledge of three papers, i.e., the two by Schwarzschild and the one by Flamm 
[23], is sufficient for this task. Furthermore, knowledge of the papers of Ricci, Bianchi, and 
Levi Civita, which were written around 1900, is advantageous. The authors established the 
tetrad calculus, which provides us with rods and clocks to measure spacetime. The tetrads 
can also be used to avoid coordinate effects6 that cannot be interpreted physically. 

As mentioned above, we do not assume a collapsing metric, but a static one. In 
doing so, we allow the possibility that a parameter can be ascribed to be time-dependent. 
Since the practicality of the exterior Schwarzschild field has been confirmed by 
experimental results, it is obvious to use the interior Schwarzschild solution for the 
collapse. Both the solutions, the interior, and the exterior, can be geometrized, i.e., can be 
explained by surfaces. The interior surface is a spherical cap with the radius R , which 

nestles against the Flamm paraboloid of the exterior solution. 

We set up the radius of the spherical cap as a function of time:  tR R , R  

decreases with time. Since the two linking conditions should still hold, the collapse occurs 
in such a way that the spherical cap slides down on Flamm's paraboloid. We have 
illustrated this in Fig.1 

 

 

Fig. 1. Collapse of Schwarzschild interior solution 

 

Further, we remember Flamm's relation 2  R . Regarding the linking boundary, 

this means that the radius of curvature   of Flamm's paraboloid determines the radius of 

the spherical cap at any time during the collapse. Thus, the collapse of the interior solution 
is closely linked to the exterior one. According to Birkhoff's theorem, the exterior solution, 
i.e., Flamm's paraboloid remains unchanged during the collapse. Thus, the collapse is 
described by a family of self-similar static solutions, the Schwarzschild interior solutions. 
We described this in detail in our paper [26]. There, we also defined the collapse velocity, 
which allows switching between comoving and non-comoving reference systems using a 
Lorentz transformation. Due to the shrinking of the stellar object, the mass density 

                                            

 

6
 In the paper [24], we showed simple examples of how the use of Ricci-rotation coefficients and Christoffel 

symbols leads to different results. 
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increases, and the volume elements decrease. The latter lead to tidal forces acting in 
addition to gravity. 

By integrating the collapse velocity, we calculated the proper time needed for the 
stellar object's surface to reach a given position during the collapse. The integral diverges 

at the inner horizon 
Hr 2.25M . This means that this position can only be reached 

asymptotically after an infinite amount of time. A plot of the time function shows a similar 
behavior as shown in the Appendix with Fig. A1. This means that the collapse does not 
end in a singularity, but that a massive, or possibly, an ultra-massive object is formed. 
Mitra introduced the term ECO (Eternally Collapsing Objects) for such objects in a series 
of papers and a book7 [26]. 

Mitra illuminated the problem from an astrophysical point of view. Among other 
insights, he found that so-called Black Holes have magnetic fields. He called these objects 
MECOs (Magnetic Eternally Collapsing Objects). Also, Black Holes cannot be the source 
of the sometimes observed X-ray bursts. 

Since the Schwarzschild theory definitely excludes Black Holes, such objects could 
only be preserved by turning to other models. However, such a task would cause 
considerable difficulties. First, one will not be able to discard the exterior Schwarzschild 
solution. According to Birkhoff's theorem, the following applies: A spherically symmetric 
field in empty space must be static, with a metric given by the Schwarzschild solution. The 
question of whether the interior solution can be replaced by another friendlier one 
concerning Black Holes remains. Such a model would have to be formally suitable for 
describing a collapse and satisfy the two linking conditions. Since the boundaries of the 
exterior Schwarzschild solution consist of circles, the alternative model must also be 
bordered by circles. To describe the stellar object as a compact geometric object, the 
boundary circles must be connected by arcs, which must have common tangents with 
Flamm's paraboloid. This inevitably requires that these arcs must in turn have circular 
shape. This leads to the conclusion that the geometric object must be a spherical cap. 
Moreover, the interior Schwarzschild solution could also have been found, if one had 
assumed a suitable surface and then determined the corresponding metric. 

 

4. COSMOLOGICAL PROBLEMS 

In this section, we discuss some specific problems in cosmology. In particular, we 
discuss the use of coordinate systems and some difficulties that arise from them. It is 
widely accepted that our universe expands in free fall. When discussing a specific model, it 
is convenient to start with a metric in comoving spherical coordinates. The standard 
form is as follows: 

 2 2 2 2 2 2 2 2 2

2

2

1
ds dr ' r ' d r ' sin d dt '

r '
1 k

 
 
       
 
  

K

R

. (4.1) 

                                            

 

7
 In an early draft (private communication), he inquired about researchers who denied the existence of Black 

Holes. Some journals rejected their papers, online contributions were deleted, and some authors had to self-
deny in order continuing their publishing. One would think that in science only arguments count, and not the 
preconceived notions. 
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Here r '  is the comoving radial coordinate; K  the scale factor; const.R  the radius 

of a hypersphere; and k the curvature parameter. A large class of cosmological models is 
based on this metric. They are called FRW models. For the curvature parameter k, one 

admits the values  k 1,0, 1  , denoting a positively curved, flat, and negatively curved 

space, respectively. The latter ones have an infinite extension. The coordinate time t '  is 
the universal time for all observers. It is also the proper time for comoving observers. Here, 
a contradiction arises. According to Lemaître a freely falling observer has universal time 
and local flatness, i.e., k 0 . Thus, models having k 1  or k 1   are ruled out. We called 
these models hybrid models in [27]. Local flatness should not be confused with global 
flatness. Lemaître showed that the metric of a positively curved space with k 1  in non-

comoving coordinates changes to a metric with k 0  using comoving coordinates. Thus, 

k is altered by a coordinate transformation and is not an invariant quantity that describes 
the curvature of space. We prefer to call k as the form parameter of the metric. Local 
flatness means that freely falling observers do not experience any gravitational forces. 
This is Einstein’s elevator principle, which we discussed in several papers [8,28,29,30]. 

Solving Einstein's field equations and the conservation law for the mass density, 
respectively, one obtains the Friedman equation. Since the original Friedman model is 
pressureless, one tried to improve the situation by manually inserting pressure into the 
right-hand side of the field equations. Of course, one did not get an exact solution to 
Einstein's field equations. Such models we called retro models. Not very surprisingly, the 
field equations contain several undefined variables, the s  and the deceleration 
parameter. This conflicts with the requirement that the universe is in free fall and that there 
should be no acceleration according to Einstein's elevator principle. Although the FRW 
models are hybrid and retro, they are called standard models. Astrophysicists are trying 
hard to equip the s  with physical meaning and to manipulate their values to fit 
observational data. Moreover, the Friedman equation, describing the expansion of the 
cosmos, contains an acceleration term and is quite complex. 

In contrast, it is very easy to construct a cosmological model that includes pressure 
and is an exact solution to Einstein's field equations. The dS cosmos is well known in the 
literature. It is a model with k 1 , thus positively curved. It can be represented 
geometrically by a pseudo-hypersphere with constant radius R . It contains forces that 

drive particles apart in all directions. Since the dS cosmos is homogeneous, the particles 
would move away from every point in every direction. This scenario does not seem to be 
quite physical. 

The problem can be solved immediately by dropping the condition const.R . The 

cosmos is expanding and de Sitter's forces are those forces that pull the mass particles 
apart due to the increase in the volume elements. 

The model is as simple as possible. It is based on a pseudo-hypersphere and the 
Friedman equation has the form8 

 1, 0 R R . (4.2) 

The EOS is 

 
0 3p 0   . (4.3) 

                                            

 

8
 The overdot denotes differentiation with respect to the universal time. 
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We called our model the Subluminal Model [31]. It is linear in expansion: no acceleration of 
the expansion can be deduced from this model, contrary to the claims of Perlmutter and 
Riess, who based their ideas on an FRW model. Moreover, there are no superluminal 
velocities of receding galaxies. 

Hubble’s law, with v as the recession velocity of the galaxies and H as the Hubble 
parameter 

 v Hr , (4.4) 

admits velocities higher than light if the distance r is unbounded. This applies to universes 
with k 0  in (4.1). This would have the consequence that galaxies cannot exchange 
information through light signals. Galactic island formation would occur. For a closed 
universe we have r sin R , where  is the polar angle. The highest value of r is r  R , 

denoting the equator of the pseudo-hypersphere to an observer at the pole. It is the 
cosmic horizon. Due to the high recession velocity of the galaxies at the cosmic horizon, 
the wavelength of the light is shifted so far into the red that it can no longer be seen. Thus, 
the universe beyond the cosmic horizon cannot be seen by an observer at the pole. Any 
arbitrary observer can define his position as a pole on the pseudo-hypersphere and has 
his own horizon. He can observe other regions of the cosmos and send information to 
distant observers. Thus, any observer can get information about parts of the sky that he 
cannot observe. 

After developing the Subluminal Model, we found a model, published by Melia9 and 
his coworkers in several papers. Surprisingly, the final results of our model agreed with 
those of Melia, although both models start with different methods. Melia's Rh=ct model is 
based on a flat, infinite space with an infinite amount of matter being created by the Big 
Bang. Based on a flat universe, he created a cosmologic horizon by comparing it to the 
event horizon of the Schwarzschild theory. Melia referred to Weyl's cosmological principle 

and to Birkhoff's theorem. An enclosed mass  hM  M r  of a given volume in the universe 

determines the Hubble radius 2

hr  2GM/ c , which leads to the relation 
hR  ct . Hubble's 

radius is defined as the distance that light has traveled since the Big Bang;  t  represents 

the age of the universe and 
hr  is the location at which the expansion rate reaches the 

velocity of light. 

Melia starts with a metric in comoving coordinates with k 0  and concludes that the 

space is globally flat. Taking into account Lemaître's results and Einstein's elevator 
principle, one can reformulate Melia's model in such a way as to see that his model is only 
locally flat and thus identical to our Subluminal Model. We have worked out this in a few 
articles [24,28,30,32,33]. The main problem in cosmology is that little attention is paid to 
the physical and geometrical consequences10 of expansion in free fall. 

Melia, who has a large collection of astrophysical data at his disposal, has 
continuously evaluated them and found that they tend to favor a linear model with constant 
expansion. He used this data to support his Rh=ct model and in doing so also provided 
arguments for our Subluminal Model. In one of his papers [34] he mentioned 10 paradoxes 
and inconsistencies related to 27 different kinds of observations concerning FRW models. 

                                            

 

9
 Most of the papers by Melia and colleagues are listed in [31].  

10
 Gravitational physicists do not have access to astrophysical data and usually do not have the expertise to 

interpret them. Cosmologists are not born with differential geometry. There seems to be some 
misunderstanding and no willingness for interdisciplinary cooperation. 
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In another paper [35] he based his arguments on the observations of the PLANCK project. 
He showed with a graph (Fig. 2) that the results are consistent with the linear model and 
not at all consistent with the FRW region (the blue area of the graph). 

 

Fig 2. Depiction of the data of the PLANCK project by Melia 

After discussing a cosmological model in comoving coordinates, several authors try 
to present the theory in non-comoving coordinates, though with little success. They call 
such coordinates Schwarzschild or curvature coordinates. We show that in general 
such coordinates do not exist. Again, we start with the static dS cosmos and its particles 
moving in free fall. Using tetrad calculus, we find that the acceleration force is in the radial 

direction and has only one component 
1U . Performing a Lorentz transformation on a 

system comoving with these particles, one obtains with the inhomogeneous transformation 
law of the Ricci-rotation coefficients 

    m 1 m' 4'U U ,0,0,0 'U 0,0,0,'U   . (4.5) 

Here, 
4''U i  R , where const.R , is the radial tidal force expanding the particles' 

swarm. Abandoning the condition const.R , we obtain our Subluminal Model. Using 

comoving coordinates, we obtain a quantity like 
m''U  mentioned in (4.5). It describes the 

expansion of a volume element in the radial direction. Now, we face a transformation to a 
non-comoving system. Bearing in mind that the expansion of a volume element is a 
physical fact, it is experienced not only by a comoving observer but by any observer, 
including non-comoving observers. Using the recession velocities of the galaxies for a 
Lorentz transformation, we perform a transformation to a non-comoving reference system. 
With the inhomogeneous transformation law of the Ricci-rotation coefficients we obtain 

    m' 4' m 1 1 4'U 0,0,0,'U U U f ,0,0,f    . (4.6) 

Here, 
1U  is the dS acceleration and  m 1 4f f ,0,0,f  are the contributions of the tidal 

forces, seen by the non-comoving observers. In general, 
1 1U f  is not a gradient of a 

space-dependent function. Thus, no lapse function can be derived from this expression, 
and no coordinate system can be associated with the non-comoving reference system. 
The lapse function of the dS model can be obtained only by turning off the expansion with 

mf 0 . 

Thus, Schwarzschild coordinates and curvature coordinates do not exist for linear 
models and we argue that they also do not exist for FRW models either. This is suggested 
to us by unsuccessful attempts by several authors. 
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5. CONCLUSIONS 

We showed that the search for new coordinates to describe the inner region of the 
exterior Schwarzschild solution is a hopeless undertaking. Coordinates can never affect 
the geometrical and physical structure of a model. Thus, the only possibility to cover the 
empty inner region of the exterior solution is to fill it with the interior Schwarzschild 
solution. The complete Schwarzschild solution definitely excludes the possibility of Black 
Holes. Once a massive star has collapsed, an ECO emerges. ECOs are most likely the 
dark objects observed in the universe. 

Coordinates are also the subject of discussion in cosmology. Commonly used are 
transformations from comoving coordinates to non-comoving coordinates and vice versa. 
In doing so, the curvature parameter k changes its value. Therefore, the usual 
symbolization for k is of little use. The universe does not change its structure with a 
coordinate transformation. In particular, we have pointed out the difference between local 
and global flatness. The confusion of these concepts leads to very different interpretations 
of cosmological models. 

If our arguments are correct, Nature is rather simple. Black Holes do not exist; there 
are no singularities either, whether naked or dressed. The Hawking radiation, no hair 
theorems, cosmic censorship, and the quantum mechanical information paradox are 
obsolete. 

Further, we live in a linear expanding universe, a universe that expands without 
acceleration. It is described by a pseudo-hypersphere that can be understood with basic 
mathematical methods. The Friedman equation is quite simple. The recession velocities of 
the galaxies are subluminal, and the laws of Special Relativity are respected. 

 

6. MATHEMATICAL APPENDIX 

 

 Tetrad systems of the Gullstrand metric: 

 

1 4 42 3

1 2 3 1 4

1 2 3 4 4

1 2 3 1 4

(A) e , e r, e r sin , e i v, e a

1 1
e a, e , e , e i v, e

r r sin

        

      


, (A1) 

 

1 2 1 43

1 2 3 4 4

1 2 3 1 4

2 3 4 41

(B) e 1, e r, e r sin , e iv, e 1

1 1
e 1, e , e , e iv, e 1

r r sin

      

    


 . (A2) 

 Freely falling observers in Einstein-Rosen coordinates: 

One has 

 0

2 2

0
2 2 2 2

0

R 1 R
dT' dR

4M 4M 4MR 16M

R 16M R 16M


 

 

.  

After some rearrangement, one obtains an integral of the type 
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x 1

x x
dx x 2 x 2ln(1 x), x 1, lim dx

x 1 x 1
      

 
  .  

For 
2 2

2 2

0

R 16M
x

R 16M





, one gets the rise time f(R) . Starting from R 0  and ending at 

0R , it increases to infinity. In this case, it is easy to mirror the function so that an observer 

starting at 
0R  reaches the event horizon at R 0  after an infinitely long time. Replacing 

the variable R by 
0R R  in the time function, the observer starts at 

0R R  and passes 

through the fall distance at R 0 . We have 

 2 20
0 02

2 2 2 2 2 2

0 0 0

2 2 2 2 2 2

0 0 0

R
f(R,R ) R 16M

32M

(R R) 16M (R R) 16M (R R) 16M
2 2ln 1 C

R 16M R 16M R 16M


 

       
    

      





      A(3) 

After a suitable choice of the integration constant 

 
0 0 0 0T'(R,R ) f(R,R ) f(R ,R )  ,  

we obtain the following graph 
 

 

Fig. A1. The fall time near the event horizon 

 

In Fig. A1, the left vertical line marks the event horizon. It turns out that no object 
infalling from a finite or infinite position can reach the event horizon in finite proper time. 

 

 Isotropic coordinates: 

One should be aware that both the values r 0  and r   denote infinity. 
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Fig. A2. Isotropic vs standard coordinates 

 

 Eddington and Finkelstein coordinates: 

4-beine 

 

1 4 42

1 1 4

1 4 42

1 1 4

e , e i v , e a

e a, e i v , e

     

    
  (A4) 

 

Transformation matrix 

 

1' 1' 4 ' 2 2 4 '

1 4 1 4

1 1 4 2 2 4

1' 4 ' 1' 4 '

1, 0, i v , 1

1, 0, i v , 1

         

        
 (A5) 

 
 

 Kruskal metric: 

 

Fig. A3. The velocities if the Kruskal metric 

 

 

 

 

 

 



 19 

 Isothermal coordinates: 
 

 

Fig. A4. Isothermal coordinates vs Schwarzschild coordinates 

 

The three curves correspond to different constants. 

 

 Polar coordinate system of the Schwarzschild exterior solution: 

Embedding: 

 

3

2

1

0

4

X Xsin sin sin

X Xsin sin cos

X Xsin cos

X Xcos cosi

X Xcos sini











   

   

  

  

  

  (A6) 

 

Fig. A5. The polar coordinate system of the Schwarzschild exterior solution 
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