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Abstract: We show that some of the FRW models are hybrid models. In the hybrid case, 
spatial parts of the line elements occur, which are typical for non-comoving systems, but 
the time in these models is the universal cosmological time – a comoving coordinate of a 
freely falling system. We investigate the line elements of models in the Florides metric and 
models in the Lemaître metric. 
 

1. INTRODUCTION 

Many papers on cosmological models start with the line element 

 2 2 2 2 2 2 2 2 2

2

1
ds dr r d r sin d dt

1 kr

 
       

 
R . (1.1) 

Here, R  either is a constant or a time-dependent variable and  k 1,0, 1   is the curvature 

parameter. As such, the values of k determine a universe positively curved and closed, 
flat, or negatively curved and open. r is the radial Gaussian coordinate and t is the 
universal cosmic time. 

Cosmological models, derived from (1.1) are called FRW models. For the case 
const.R , we face the models of the dS family. Generally, it is assumed that in this family, 

a crowd of points is moving apart from each point of these homogeneous spaces. The 
metric (1.1) should carry the information for these motions if the variables in these metrics 

are comoving with the points of the crowd. For  tR R , a variety of expanding, 

contracting, or pulsating universes can be derived. We use the tetrad representation, i.e., 
local rods and clocks for measuring physical quantities and also use the original Minkowski 

notation  4x i c t . 
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2. ANOTHER VIEW ON THE FRW MODELS 

We change the notation of (1.1) for a better understanding of the geometrical 
background of the problem. Instead of the Gauss coordinate r sin  , we use for k 1  the 

relations 
0 0 0, r sin , const.   R KR R R  and obtain the following with 

0r rR  and K  

as scale factor 

 2 2 2 2 2 2 2 2 2

2

2

0

1
ds dr r d r sin d dt

r
1

 
 
       
 

 
 

K

R

. (2.1) 

Facing the metric (2.1), it is noticeable that the space-like part of the metric has the 
form of a metric on a hypersphere. In this case, the variables r, ,   are non-comoving 

coordinates. To verify this, we perform a further transformation with 
0dr cos d  R  and 

obtain 

 2 2 2 2 2 2 2 2 2 2 2ds d sin d sin sin d dt         R R R . (2.2) 

For k 1  , we substitute r sh R  and obtain 

 2 2 2 2 2 2 2 2 2 2 2ds d sh d sh sin d dt         R R R . (2.3) 

Finally, for k 0 , we obtain a flat metric. Evidently, the spatial parts for the metrics (2.2) 
and (2.3) are the line elements of a three-dimensional hypersphere, embedded into a four-

dimensional flat space. For k 1 , the radius of the hypersphere is real; for k 1  , the 
radius is imaginary. Thus, , , and    are non-comoving coordinates on the spheres. The 

time t is a 'cylindrical' variable. 

Looking for a possible interpretation of the metrics, we note that the lapse function 

of both metrics is 
44g 1 . It follows that no gravitational force can be derived for both 

metrics. Consequently, both spaces are free of gravitation and the models cannot be used 
for physical interpretation, or the lapse function indicates that the observers in these 
spaces are in free fall and t is a comoving coordinate. 

In this case, we realize that the FRW metrics are built of two kinds1 of metric 
coefficients: one referring to comoving and the others to non-comoving coordinates. Thus, 
we call these FRW metrics hybrid metrics. 

Florides [1] interpreted the variables of (1.1) as comoving coordinates and searched 
for metrics in non-comoving coordinates for the case of const.R . In our papers [2][3], we 

reformulated the procedures in tetrad calculus. Consequently, we were able to 
complement the calculations with Lorentz transformations or pseudo-rotations. We found 
expressions that we did not believe in. Investigations concerning this problem were made 
by Mitra [4][5] and Lachieze-Rey2 [6]. Gautreau [7] discussed only flat models (k 0 ). The 
question that arises is why one must deduce a metric in static coordinates from an FRW 
metric, although several models were presented by the original authors with embeddings, 
i.e., although the corresponding metrics are given in non-comoving coordinates. 

                                            
1
 We recall the theorem of Pythagoras: 

2 2 2
a b c  . If the sides a and b are attributed to different triangles, 

we obtain some ominous c. 

2
 They start with an FRW metric with k 1   to obtain the dS model. After some calculations, they obtain a 

static metric that evidently differs from the well-known dS solution.  
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3. LEMAÎTRE METRICS  

To study the problem in more detail, we investigate the dS-family consisting of the 

dS, AdS, Lanczos, and Lanczos-like models. For all these models, 
0 const.R  and 

embeddings exist, as listed in the Appendix (A1–A4). The line elements of the Lanczos [8] 
and Lanczos-like models have the hybrid form of (2.2) or (2.3). They are less useful in a 
physical application. 

From the embedding, we deduce the line elements of the dS model [9]-[12] 

(I B) 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0ds d sin d sin sin d cos di           R R R R . (3.1) 

The radius of the sphere in the three-dimensional spherical space is 2r x x , 1,2,3    , 

and 
0di idt R  is the definition of the coordinate-time interval. With 

0r sin R , the line 

element can be written as 

(I B') 2 2 2 2 2 2 2 2 2

2

1
ds dr r d r sin d cos dt

cos
       


 (3.2) 

or as 

(I B'') 
2

2 2 2 2 2 2 2 2

2 2

0
2

0

1 r
ds dr r d r sin d 1 dt

r
1

 
        

 
R

R

. (3.3) 

We remember that de Sitter has described a static cosmos by (3.2). The so-called 
expanding version was added later. We note that the de Sitter model is based on a time-
independent geometric framework. The coordinate system used here is the non-comoving 
one. 

For the AdS model, we get from the embedding the metric in non-comoving 
coordinates 

(II B) 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0ds d sh d sh sin d ch di           R R R R , (3.4) 

(II B') 2 2 2 2 2 2 2 2 2

2

1
ds dr r d r sin d ch dt

ch
       


, (3.5) 

(II B'') 
2

2 2 2 2 2 2 2 2

2 2

0
2

0

1 r
ds dr r d r sin d 1 dt

r
1

 
        

 
R

R

 (3.6) 

having applied 
0r sh R . Here, (I B'') and (II B'') are written in the canonical form. From 

these, it is possible to read the type of curvature, i.e., k 1  for the dS and k 1   for the 
AdS model. Gravitational forces emerge in both the dS and AdS models. They can be 
explained as forces acting on a cloud of observers drifting apart from arbitrary points on 
the hyperspheres. 

For both models, we have found Lemaître transformations [13] for comoving 
systems and obtained following metrics in Lemaître form: 

 (I A)      2 2 2 2 2 2 2 2 2ds dr ' r ' d r ' sin d dt '      K , (3.7) 

 (II A)      2 2 2 2 2 2 2 2 2ds dr ' r ' d r ' sin d dt '      K . (3.8) 
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Here,  t 'K K  is the time-dependent scale factor, describing the expansion of an 

assumed particle cloud in comoving coordinates and t '  is the universal cosmological time, 
identical to the proper time of the drifting particles. Although the line elements are formally 
identical, they differ in terms of the definitions of r '  and K . Evidently, the metrics (A) are of 

type k 0 , which is typical for a flat space. This does not imply that curved spaces with 

k 1  and k 1   can be transformed into a globally flat spaces, but that they can be 
transformed only into a locally flat space, according to Einstein’s elevator principle 

[14][15][16]. The lapse functions in (I A) and also in (II A) are 
4'4'g 1  and indicate that a 

cloud of particles moves in free fall in the universes. No gravitational forces can be 
deduced from the lapse functions. 

Both models have been treated in [13] in more detail. There, we have extended the 
dS and AdS models to expanding models and have shown that the recession velocities of 
the models are physical velocities and not coordinate velocities and thus cannot be 
explained by expansion effects. 

Since the AdS model is open and infinite, admits superluminal velocities, and its 
geometrical structure is less applicable, we concentrate ourselves only on the dS model. 
We work out the very structures that a physically interpretable model should have. 

 

4. THE BASIC STRUCTURE FOR LEMAÎTRE MODELS 

 We call the models having metrics of type (A) and (B) Lemaître models to 
distinguish them from the FRW models that expose different geometrical structures. For 
further processing, it is necessary to exclusively use tetrads and Ricci-rotation coefficients. 
The coordinate way of writing and the use of Christoffel symbols do not exhibit the desired 
geometrical and physical structures. In the worst case, they produce mathematical 
artifacts. Indeed, this was seen in a paper by Melia [17]. Concerning this problem, we [18] 
compared the Ricci-rotation coefficients with the Christoffel symbols and showed that the 
Ricci-rotation coefficients describe the curvatures of slices of a sphere, which is the basis 
of the model, while the Christoffel symbols are a collection of angular functions and a 
relation to geometrical objects is missing. 

To start with, we decompose the Ricci-rotation coefficients as follows: 

 s s s s

mn mn mn mnA B C U   . (4.1) 

We perform a further decomposition 

 
s s s s s s s n s

mn m n m n mn m n m n mn m n m nB b B b b b B , C c C c c c C , U u U u u u U      , (4.2) 

where 

      m m mb 0,1,0,0 , c 0,0,1,0 , u 0,0,0,1    (4.3) 

are the unit vectors in the second, third, and fourth directions of the space. From (3.2), we 
read the tetrads 

 
1 32 4

1 2 3 4

1
e , e r, e r sin , e cos

cos
     


 (4.4) 
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and we calculate the field strengths from the Ricci-rotation coefficients3. The lateral field 
quantiles are 

 
m m

1 1 1
B cos ,0,0,0 , C cos , cot ,0,0

r r r

   
       
   

. (4.5) 

They describe the curvatures4 of the greater circles and parallels of the hypersphere. From 
the lapse function, one obtains the gravitational force5 

 m

0

1
U tan ,0,0,0

 
   
 R

, (4.6) 

which acts in the radial direction. This force can be interpreted in such a manner that it 
drives points on the hypersphere from an arbitrary point in all radial directions. One reads 
the velocities of these points from the lapse function of (3.3) as 

 
0

r
v sin  

R
. (4.7) 

Thus, they are geometrically defined. The associated Lorentz factor is 

 
2 2

0

1 1

cos 1 r
  

  R
. (4.8) 

The matrix of the Lorentz transformation is noted in the Appendix (A5). 

We want to know how observers experience forces if they are comoving with the 
drifting points. For this purpose, we have to apply the inhomogeneous transformation law 
of the Ricci-rotation coefficients [19]: 

 
s' m n s' s s' s

m'n' m'n's mn s n'|m''A L A L L  . (4.9) 

Primes signify quantities and indices in the comoving system. After applying some algebra, 
we obtain the following: 

 

m m'

0

m m'

0

m m'

0 0

1 1 i
B cos ,0,0,0 B ,0,0,

r r

1 1 1 1 i
C cos , cot ,0,0 C , cot ,0,

r r r r

1 i
U tan ,0,0,0 'U 0,0,0,

  
       
   

  
         
   

   
        
   

R

R

R R

. (4.10) 

Evidently, the spatial parts of the lateral field quantities appear to be flat in the new system  

 
' '

1 1 1
B ,0,0 , C , cot ,0 , 1,2,3

r r r
 

   
       
   

. (4.11) 

                                            
3
 More details can be found in our monographs [19]. 

4
 In a local five-dimensional tetrad system, these quantities would have the following components: 

   a a

1 1 1 1 1
B sin cos ,0,0,0 , C sin , cos , cot ,0,0

r r r r r
,       with

a a

a a

1 1
B B , C C , a 0,1,...,4

r rsin
  


. 

5
 U is the geometrical force; -U the physical force. 
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An observer in free fall experiences space as locally flat, which is in agreement with 

Einstein’s cosmic elevator [14][15]. Moreover, the quantity 'U  does not have any radial 
component, indicating that no gravitational forces are acting on the freely falling observer. 
In addition, all three quantities contain a fourth component, the tidal forces. They describe 
the expansion of a volume element that encloses the diverging points in the dS cosmos. 
Indeed, the expansion scalar is 

  
4 '

m' m' s '

||m' m's ' m'2 2

0 0

i D 'u 3
'u 'A 'u 3 , , 'u 0,0,0,1

Dt '
    

R R
, (4.12) 

where 
m''u  is the comoving observer. 

Eqs. (4.10) are the fundamental equations for a cosmological model based on a 
pseudo-hypersphere with a constant curvature. All static models with drifting observers 
have to have this structure if spherical coordinates are used. We recall that even the non-
physical AdS model shows this structure. Certainly, it is a Lemaître model, too. In contrast, 
we show in the Appendix (A6), (A7) that other models, derived from the FRW metric with a 
Florides transformation, do not have this structure. Both Lanczos models contain non-flat 
components in the space-like part of the comoving metrics although the cosmic time 
indicates free fall. 

Now, we will calculate the 4-beine for the comoving system. The transformation 
from the non-comoving to the comoving system is 

 
m'm ' m

i

i ' m i i 'e L e  . (4.13) 

The Lorentz transformation L is given by (A5) and the Lemaître coordinate transformation 
[20][21]   by (A8). Finally, we obtain the comoving reference system as follows: 

 
' 4 '2 3 '1'

1' 2 ' 3 ' 4 'e , e r, e r sin , e 1    K . (4.14) 

Here is 0t 'e , r r ' 
RK K , r '  is the comoving radial coordinate, and t '  is the universal 

cosmological time. For the metric, one gets the well-known Lemaître form of 

  2 2 2 2 2 2 2 2 2ds dr ' r ' d r ' sin d dt '      K , (4.15) 

being a special case of the FRW metrics for k 0  and describing a locally flat space. From 
the above metric, one can again derive the equations (4.10) for the comoving system. 

 

5. TIME-DEPENDENT MODELS 

The simplest way to get a time-dependent model expanding in free fall from a static 
model based on a pseudo-hypersphere is to omit the condition const.R . Now, R  is the 

radius of the expanding hypersphere. Starting with an FRW metric, we have to restrict 
ourselves to the case k 0 , i.e., to a Lemaître metric – a metric describing observers in 
free fall. 

The requirements for the seed metric of an expanding model are perfectly fulfilled 
by the dS model. We derived such an expanding model [22] and called it the Subluminal 
Model. This expanding model is presented as a series of self-similar dS models, and the 
velocities of the drifting particles of the dS model are adopted as the recession velocities of 
the galaxies. 
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Another non-hybrid model was presented by Melia6 and called the Rh=ct model. It 
starts with the metric of type (4.15). But the specification k 0  is interpreted by Melia as a 
property of a globally flat space being infinite. But it can be shown that the Rh=ct model 
can be reformulated in such a manner that it is identical to our Subluminal Model. Both 
models, the Rh =ct model and the Subluminal Model, and also the unphysical expanding 
version of the static AdS model, are exact solutions of Einstein's field equations. The FRW 
models, particularly the standard model, are commonly not exact solutions7 of Einstein's 
field equations and are hybrid models. 

In the standard model, the pressure tacitly is put in by hand. This has the 
consequence of several parameters – the s  and the deceleration parameter – having to 
be determined by data of astrophysicists. In contrast, only one parameter has to be fixed 
by astronomical observation for the exact non-hybrid models. This is the time-dependent 

scale factor K  or the age of the universe, respectively. Referring to our Subluminal Model, 

it concerns the radius of the pseudo-hypersphere     0t ' t 'R K R , 
0R  being a constant 

and 1, 0 K K . The expansion is linear and no inflation occurs. Melia has shown in 

several papers that observational data have best fit to his Rh=ct model. For the same 
reason, our Subluminal Model is favored. 

Moreover, in the hybrid models, second derivatives of the scale factor enter into the 
Friedman equation, which indicate acceleration. This is in contradiction to Einstein’s 
elevator principle, which demands that no acceleration should appear in freely falling 
systems. 

Lastly, we face a problem that seems to be important for some authors. They raise 
the question of whether a non-comoving coordinate system can be determined from the 
FRW ansatz also for expanding models. Here, we note a paper of Melia [23] and Mitra [4]. 
Such desired coordinates are sometimes called Schwarzschild coordinates or curvature 
coordinates. We doubt that it could be possible to derive such coordinates for expanding 
models, as for a time-dependent radius of the pseudo-hypersphere, a new quantity enters 

the theory: 4 ' |4 ' |4 '

1 1
 F R K
R K

. This describes the expansion of a volume element. As we 

do with a genuine expansion, a fictive non-comoving observer should also recognize this 
enlargement of volume elements. With a Lorentz transformation to a non-comoving 

system, one obtains the quantity 4'

m m 4'LF F  accompanying the gravitational force 

emerging in the non-comoving system. This quantity cannot be absorbed by the non-linear 
term of the transformation law of the Ricci-rotation coefficients. The total expression is not 
a gradient and not integrable; the grounds are quite reasonable. The Friedman equation is 
a result of two systems of differential equations – Einstein's field equations and the Bianchi 
identities. The former describe the curvature, while the latter describe the change of the 
curvature of the pseudo-hypersphere. But the lapse function is a result of Einstein's field 
equations alone and cannot be determined by the Bianchi identities. Indeed, one would get 
a lapse function in switching off the expansion, i.e., to do without the Bianchi identities. 

Another problem occupies the cosmologists – the Milne cosmos [24][25]. The model 
of Milne is based on the principles of special relativity. In a flat space, there is first 
concentrated matter, which spreads into all directions after an initial process. The redshift 
of the light emanating from the receding stars has a kinematic origin and is explained by 
the Doppler effect. Interestingly, the Milne cosmos is also regarded as a special case of 
the Friedman cosmos, with the curvature parameter being k 1  . With a suitable 

                                            
6
 Quotation of the papers by Melia and his coworkers can be found in [22]. 

7
 Several authors are working with equations that have actually not been solved.  
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coordinate transformation, one can bring the metric into a flat form in order to obtain the 
original description of the Milne cosmos. We want to highlight this process critically [26]. 

Specializing the Friedman metric with 1R  and taking tR , we obtain the 

following with the coordinate transformation introduced by Walker [26]: 

 r ' t sh , t ' t ch    . (5.1) 

One thus obtains from the k 1   metric a flat metric as expected for the original Milne 
metric: 

 2 2 2 2 2 2 2 2ds dr' r' d r' sin d dt '       . (5.2) 

Although the specification 1R  is possible, one has confused the curvature radius 

R  with the time t. This gives the impression that a space with a negative curvature can be 

transformed into a flat space by means of a coordinate transformation. This violates the 
principle of covariance. 

If we rewrite the transformation (5.1) as 

 1' 0'x sh , x i ch   R R ,  (5.3) 

we recognize that new coordinates 0' 1'x ,x  are the Cartesian coordinates of the five-

dimensional embedding space of the k 1   model. The complete embedding is noted in 
the Appendix (A9). It describes a hypersphere complemented with an additional 
‘cylindrical’ time dimension. Evidently, the model is hybrid, which also can be read from the 
familiar Friedman metric. In one of his papers, Melia also could not resist the temptation to 
use the scale factor as the time variable. 

The preceding discussion shows that it is entirely justified to critically shed light on 
cosmological models. 

 

6. CONCLUSIONS 

We have reinvestigated the FRW models and shown that the cases for positive and 
negative curvatures are hybrid. This means that the metrics contain non-flat components 
in comoving coordinates although the lapse functions have the value 1, which is typical for 
freely falling systems in expanding universes and where the time is the universal cosmic 
time. 

Only for the case k 0  do field quantities emerge which can be interpreted 
geometrically correctly and a physical explanation can be provided for them. Since the 
structures and transformations have been elaborated by Lemaître for the Schwarzschild 
model and dS model, we call the metrics Lemaître metrics to distinguish them from the 
hybrid FRW metrics. The Lemaître metrics describe freely falling observers in the 
Schwarzschild field or in static cosmological models. The latter can be further generalized 
to expanding cosmological models. 
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7. MATHEMATICAL APPENDIX 

The embedding of the dS model is 

 

3

0

2

0

1

0

4

0

0

0

x sin sin sin

x sin sin cos

x sin cos

x cos sini

x cos cosi

   

   

  

  

  

R

R

R

R

R

. (A1) 

The embedding of the AdS model is 

 

3

0

2

0

1

0

4

0

0

0

x sh sin sin

x sh sin cos

x sh cos

x i ch sin

x i ch cos

   

   

  

  

  

R

R

R

R

R

. (A2) 

The embedding of the Lanczos model is 

 

3

0

2

0

1

0

0

0

4

0

x cosi sin sin sin

x cosi sin sin cos

x cosi sin cos

x cosi cos

x sini

    

    

   

  

 

R

R

R

R

R

. (A3) 

The embedding of the Lanczos-like model is 

 

3

0

2

0

1

0

4

0

0

0

x sh sh sin sin

x sh sh sin cos

x sh sh cos

x i sh ch

x ch

    

    

   

  

 

R

R

R

R

R

. (A4) 

The Lorentz transformation to a non-comoving system is 

 m

m'

1
itan

i vcos

1 1
L

1 1

1 i v
i tan

cos

 
       

   
       
   
     

 

  (A5) 
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Typical field quantities for hybrid models are 

 

m m m

0

m' m'

0 0

m'

0

1 1 1 1
B cos ,0,0,0 , C cos , cot ,0,0 , U tan ,0,0,0 ,

r r r

1 i 1 1 i
B cos ',0,0, th ' , C cos ', cot ,0, th ' ,

r r r

i
'U 0,0,0, th ' ,

    
            
     

   
           
   

 
   
 

R

R R

R

 (A6) 

and 

 

2 2

m m

m
2

0

m' m'

0 0

m'

0

1 1 1
B 1 sh ,0,0,0 , C 1 sh , cot ,0,0 ,

r r r

1 sh
U ,0,0,0 ,

1 sh

1 i 1 1 i
B cos ',0,0, cth ' , C cos ', cot ,0, cth ' ,

r r r

i
'U 0,0,0, cth ' .

   
         
   

  
  

   

   
           
   

 
   
 

R

R R

R

 (A7) 

The Lemaître coordinate transformation for the dS model is 

 

2

i i '

i ' i

2 2

2

1 isin
isin

cos
1

1
,1

1
sin 1

i sin
i 1cos cos
cos

 
       

   
      
            

 

K
K K

K

. (A8) 

 

The embedding of the k 1   ‘Milne’ model is 

 

3 '

2 '

1'

0 '

4 '

x i sini sin sin sh sin sin

x i sini sin cos sh sin cos

x i sini cos sh cos

x i cosi i ch

x it

       

       

     

   



R R

R R

R R

R R

. (A9) 
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