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1. INTRODUCTION 

 

We suggest that a detailed geometrical revision of cosmological models will be 
advantageous in the understanding of their physical content. We treat exclusively 
positively curved models in this paper, because we believe that infinite worlds with infinite 
matter created at the Big Bang are not realized by Nature. We use embeddings of curved 
spaces in higher dimensional flat spaces as a geometric method and restrict ourselves to 
embeddings of class one. The 2nd fundamental forms, the Gaussian equations, and the 
Codazzi equations also play an essential role. 

2. THE PSEUDO-HYPERSPHERE 

 

In our considerations, the geometric object, i.e., the pseudo-hypersphere, has a 
fundamental meaning. Therefore, we connect to historical methods of embedding 
geometric objects in a 5-dimensional fictitious space. 

In a 5-dimensional flat space spanned by a Cartesian coordinate system 
a' 0',1',...4' , a family of pseudo-hyperspheres with radii R  is defined by the equation 

 
a ' a ' 2x x  R .   (2.1) 

In pseudo-spherical coordinates 

 

3 '
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4 '
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R

R

, (2.2) 

the line element in the 5-dimensional space has the form 

 2 2 2 2 2 2 2 2 2 2 2 2 2 2ds d d sin d sin sin d cos di            R R R R R . (2.3) 

If we select one of the pseudo-hyperspheres by means of the embedding condition 

 const.R ,  (2.4) 

we obtain one of these pseudo-hyperspheres and a 4-dimensional metric. The time 
interval is given by 

 di idt R  (2.5) 

and represents the arc element on an (open) pseudo-circle. The metric has the index 4. 

We use the original Minkowski notation with  4x i c t . 

From (2.3), we can read the components of the 5-beine, tangent to the local 
spherical coordinate system as: 

 
0 1 2 3 4

0 1 2 3 4e 1, e , e sin , e sin sin , e cos        R R R R . (2.6) 

From these, we can immediately compute the reciprocal components. For the description 
of the problem, we exclusively use the pentad and the tetrad calculus. Consistently, for the 
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partial derivatives in the tangent system of the pseudo-hypersphere with the local pseudo-
spherical coordinates a 0,1,...4 , we have 

       
0 1 2 3 4

1 1 1 1
, , , ,

sin sin sin cos i

    
         

        R R R R R
. (2.7) 

For the radii of the family of pseudo-hyperspheres, the following applies: 

  |a an 1,0,...0 R . (2.8) 

Here, 
an  is the normal vector of the pseudo-hypersphere, and 

0n  is the component in the 

local extra dimension. In the following sections, we will allow a time dependence of R  for 

expanding universes. 

The Ricci-rotation coefficients [1] constitute the basis for a coordinate-invariant 
representation of a world model. We first compute their 0-components with (2.6) and (2.7). 
Consequently, only the quantities 

 
s is s 0

m0 i m mn mn
m|0

1 1
A e e , A g     

R R
. (2.9) 

remain. Here, m 1,2,...,4  are 4-bein indices and i 1,2,...,4  are coordinate indices. 

For the covariant 5-dimensional derivative of the normal vector we find: 

 s 0

m|||n m|n nm s nmn n A n A    .  

We recognize 

 mn m|||n [mn] mn mn

1
A n , A 0, A g  

R
 (2.10) 

as 2nd fundamental forms of the surface theory. They can be used to represent the 
essential properties of a cosmological model. 

Next, we separate the 0-components from the Riemann and decompose the Ricci-
rotations coefficients according to 

 c c c

ab ab abA 'A  . (2.11) 

'A now contains only 4-dimensional components, whose structure depends on the 
embedded surface, in our case, on the structure of the pseudo-hypersphere. The tetrads 
and coordinate system should be adapted to the geometrical structure as best as possible 
so that the calculations run smoothly. 

We summarize the previously calculated fundamental forms in the quantity 

 c c c

ab a b abA n A n     (2.12) 

The 4-dimensional covariant derivative, which refers to the surface of the pseudo-
hypersphere, is given by 

 s

m||n m|n nm s'A    . (2.13) 

In particular, we have 

 
m||nn 0 . (2.14) 

The 5-dimensional Riemann in pentad form 

 
c c g c

dab [a b |||d] [a b d]gR 2 A A A 0
   

      (2.15) 
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is identically zero, since we assume a flat embedding space. If we decompose according 
to (2.11) and use the covariant 4-dimensional derivative, we obtain after some calculations 

 c c c g g c c

dab dab [d a]b ||g a] gb dabR 'R 2n 'A n A 'A       . (2.16) 

Here, 

 d c g c

dab [a b ||d] [a b d]g'R 2 'A 'A 'A
   

     (2.17) 

is the 4-dimensional Riemannian, which no longer contains 0-components. The underline 
means that the index refers to the 4-dimensional embedded space. Furthermore, we have 

 c c g c c g c c

dab b [a ||d] b [d a] g [a b ||d] [d a] gb [a d]b2 n A n A n A A n A n A n A A
 

        . (2.18) 

Considering (2.9), 

 c g c g

[a ||d] [d a] g [a b ||d] [d a] gbA A n A 0, A A n A 0
 

    ,  (2.19) 

where the first relation in the four-dimensional form is the Codazzi equation 

 s

[m ||n]A 0 , (2.20) 

which is trivially satisfied since the radius of curvature of the pseudo-hypersphere is 
constant. Finally there remains only 

 c c

dab [a d]b2A A  . (2.21) 

From the parenthesis in (2.17) we take 

 
c g g c

ab ||g a gbA n A 'A .  

It essentially contains expressions of the spherical frame of reference, which can be found 
in the Mathematical Appendix A. A short calculation using (2.10) shows that the expression 
vanishes as well. For the pseudo-hypersphere there remains only: 

 
d c c

dab dab [a d]b'R 2A A      (2.22) 

If we also use (2.10), we get for the 4-dimensional form 

 rm ns mn rs ms rn2

1
'R g g g g   R

. (2.23) 

These are the Gaussian curvature equations for the embedding of an M4 in a flat M5. 

By contraction, the Ricci tensor and Ricci scalar can be derived from these 
relations. With equations (2.16) - (2.18), we have revealed the general structure of a 
closed cosmological model. Further, with (2.20) and (2.23), we have reduced the general 
relations to those of a pseudo-hypersphere. 
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3. THE DE SITTER COSMOS 

In the year 1916, de Sitter [2-6] proposed a matter-free cosmological model that 
contains the cosmological constant in the field equations. This model has raised questions 
about the validity of Mach's principle. According to Mach, gravitational effect should be 
determined by the total mass of space. However, gravitational forces are present in the 
empty de Sitter cosmos. We evaded the discussion of this problem by bringing the 
expression that has the cosmological constant to the right side of Einstein's field equations 
and identifying it with the pressure and the mass density. 

The dS cosmos is geometrically based on a pseudo-hypersphere, as described in 
section 2. If we have selected a pseudo-hypersphere from the family, then the metric on it 
is 

 2 2 2 2 2 2 2 2 2 2 2 2 2ds d sin d sin sin d cos di           R R R R .  (3.1) 

If we define a radial variable 

 r sin R , (3.2) 

we can also express the metric in the form 

 2 2 2 2 2 2 2 2 2

2

1
ds dr r d r sin d cos dt

cos
       


       

or 

 
2

2 2 2 2 2 2 2 2

2 2

2

1 r
ds dr r d r sin d 1 dt

r
1

 
        

 
R

R

. (3.3) 

We have listed the Ricci-rotations coefficients related to (3.1) in the Mathematical 
Appendix A. 

In the previous section, we presented the geometry of the pseudo-hypersphere in 
detail. We can now refer to these results. From (2.23), we calculate the Ricci and Einstein 
tensors: 

 mn mn mn mn2 2 2

3 12 3
R g , R , G g   

R R R
. (3.4) 

This results in 

 0 02 2

3 3
p , , p 0       

R R
. (3.5) 

The first two field quantities given in Appendix (A.1), describe the spherical structure of the 
model. More interesting, however, is the quantity U, which is calculated from the lapse 
function of (3.1) and points in the radial directions in the cosmos. Particles forming a 
swarm are driven apart in all directions in free fall. This has raised the question of where 
these particles eventually end up. Eddington conjectured that the matter of the cosmos is 
swept together on a mass horizon. 

Finally, it was supposed that it is not the swarm but the cosmos itself that expands. 
Lemaître [7] and Robertson [8] have established a transformation to a coordinate system 
that comoves with the drifting particles. In the Appendix A, we have given this 
transformation in a notation corresponding to the form of metric (3.1). This coordinate 
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transformation can be associated with a Lorentz transformation. We have presented the 
somewhat tedious conversion in detail in [1]. 

The metric in these coordinates has the form 

 2 2 2 2 2 2 2 2 2 2 ' t '
ds dr ' r ' d r ' sin d di ' , e , '            K R K

R
, (3.6) 

where the variables of the comoving system are primed. The metric is of the type k 0 , 
where k is called the curvature parameter. This should indicate whether a space is 

positively curved  k 1 , flat  k 0 , or negatively curved  k 1  . A Lemaître 

transformation transforms the metric (3.1) of type k 1  into the metric (3.6) of type k 0 . 
This does not mean that the curvature of the space is changed by the coordinate 
transformation, but that an observer comoving with the expansion of the particle swarm 
perceives the space as locally flat. This is similar to the way an observer does in a freely 
falling elevator in the Schwarzschild field. The variable t' in (3.6) is the cosmic time valid for 
all observers and thus also the proper time of all drifting observers. This, and also the 
shape of the metric indicate that the particles of the swarm are in free fall. 

 The coordinate transformation can be associated with a Lorentz transformation as 
shown in detail in [1]. However, the Lorentz transformation can be easily obtained by 
reading the relative velocity of the particles from the lapse function of (3.3). From  (3.2), we 
have 

 
r

v sin  
R

, (3.7)  

and thus, also the Lorentz factor 
2 21 1 r   R . If an observer defines his position on 

the pseudo-hypersphere as a pole, then the velocity of the particles would be the velocity 

of light at his equator. Thus, the equator  2    is the cosmic horizon. 

The field quantities of the comoving system can be calculated directly with (3.6) by 
reading the 4-beine from (A.3) and using them to determine the Ricci-rotation coefficients  
(A.4). Alternatively, we can use the inhomogeneous transformation law of the Ricci-
rotations coefficients (A.5). The spatial part of the two lateral field quantities takes on a flat 
form. The quantity U transforms accordingly to 

 
m m'

1 i
U tan ,0,0,0 'U 0,0,0,

   
        
   R R

  (3.8) 

and makes it clear that acts no gravity in the comoving system, i.e., that the drifting 
particles are in free fall. As stated above, the common global time is also valid for them. 

In the comoving system, the forces manifest themselves as tidal forces: 

 4 ' 4 ' 4 '

i
'U B C   

R
. (3.9) 

They expand a volume element in all three directions. However, the spatial parts of 
the lateral field quantities necessarily appear as flat: 

 
' '

1 1 1
B ,0,0, , C , cot ,0,

r r r
 

   
     
   

. (3.10) 

This is a consequence of Einstein's elevator principle [9]. In an elevator which is in 
free fall, no gravitational forces act, therefore, the curvature of space is not perceivable. 



 7 

Thus, the dS cosmos appears locally flat in the comoving system, but is still globally 
curved. 

The mathematical structure of the tidal forces suggests a second application of 
surface theory. In Appendix B, we repeated the mathematical methods which we 
presented in Section 2, but lowered the dimension of the embedding by one degree. The 
embedding vector of a 3-surface represented by the particle swarm is time-like 

  m''u 0,0,0,1 , (3.11) 

and the tidal forces are identified with the 2nd fundamental forms of the surface theory1: 

 mn mn

i
D *g 

R
. (3.12) 

Here, 
mn*g  is  the 3-dimensional part of the metric. 

For all further considerations, we can rely on the formulae (B.5) and (B.6). We will 
see that these relations simplify their application to the dS cosmos. 

However, we have to consider that in the comoving system, several quantities 
depend on the global time t'. We calculate this dependence using 

 
4' 1 4'i v i v and

i '

 
       

  R R
. (3.13) 

Thus, we can show that the second and fourth terms in (B.5) vanish. Also, the Codazzi 
equation 

 s

[m s]D 0


   (3.14) 

is trivially satisfied. The 3-dimensional Ricci is also zero, since the space is locally flat. 
There remains only 

 s rs rs n s

mn mn s m n rs rs n sR D D u u D D , R D D D D      . (3.15) 

From this equation, we get: 

 mn mn 0 o2 2 2

3 3 3
G g , p , , p 0         

R R R
. (3.16) 

These are the same values as in the static case (3.5). In the dS cosmos, in spite of 
the particle motion, no matter currents appear, pressure and matter density remain 
constant despite the expansion. Mitra [10] has pointed out in a paper the existence of 
contradictions concerning the transformation from a comoving to a non-comoving 
reference frame. Grøn [11] calls the absence of matter currents the Mitra paradox. 

The unphysical behavior of p and 
0  follows directly from the possibility of 

proceeding from the non-comoving system to the comoving system with a Lorentz 
transformation. Since the Ricci and the Einstein tensors are Lorentz-invariant, it follows 
from (3.16) that 

 m n m n

m'n' m'n' mn m'n' mn m'n'2 2

3 3
G L G L g g

 
     

 R R
  

and therefore also the formal invariance of the stress-energy-momentum tensor. 

                                            
1
 We temporarily omit the primes at the indices and the kernels, since we are only working with the comoving 

system. 
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We illuminated the dS cosmos mathematically, and to further elaborate the problem, 
we have given another formal way of describing the embedding of the pseudo-
hypersphere in Appendix C. We added a 0-component to the field quantities and allowed 
us to show that the norm of these quantities describes the curvature of the normal and 
oblique cuts of the pseudo-hypersphere: 

 
1 1 1 1

M , B , C , U
sin sin sin cos

   
   R R R R

.  

The curvature equations of these quantities are all of the type 
2

1 1
0

r r r


 


, and are 

subequations of Einstein's field equations. By performing a [0+4] decomposition and 
bringing the 0-terms to the right-hand side of Einstein's field equations, we obtain the well-
known expressions for the stress-energy-momentum tensor of the dS cosmos. 

Schrödinger [12] and several other authors have interpreted the dS cosmos that it is 
not a particle swarm but the cosmos itself that is expanding. Schrödinger assumes a 
pseudo-hypersphere but demonstrates the expansion problem on a hyperboloid of 
revolution. Like Schrödinger, Rindler [13] interprets the dS cosmos as a hyperboloid and 
shows that time-like cuts on the hyperboloid through arbitrary planes correspond to 
uniformly accelerated particles. The problem has also been addressed by Robertson. To 
interpret a pseudocircle in a pseudoreal representation as a hyperbola may be illustrative; 
however, taking this representation literally can lead to errors. 

The Schrödinger treatment of the dS cosmos probably dates back to a 1919 paper 
by Weyl [14], which explains the redshift of drifting galaxies on orbits that are cuts on the 
hyperboloid. Weyl relates the Doppler effect of moving light sources to the Einstein effect – 
the redshift between points of different gravitational field strength. 

The discussion about how to understand the de Sitter model in its two versions 
occupied a wide space at that time. Finally, the eminent mathematician Klein was 
addressed. His detailed answer ended the discussion. It is not known whether Klein's 
authority or the argumentative content of the paper was decisive. However, we cannot find 
any connection between the geometries of the hyperspheres or their space-time sections 
and Klein's statements, nor have we found any paper that refers to Klein's publication. 

A detailed report of the discussions and the correspondence of some scientists to 
this topic can be found in the work of Röhle [15]. 

The dS model has intrinsic inconsistencies and does not represent a cosmological 
model that can describe Nature. Nevertheless, its mathematical structure is quite 
interesting and can play a role in the construction of a more sophisticated model.
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4. THE SUBLUMINAL MODEL 

 

 Since Friedman [16,17] it is known that an expanding universe can be described by 
a metric whose spatial part describes the metric of a hypersphere whose radius is time-
dependent. The general form of such a metric in comoving coordinates will be:  

 2 2 2 2 2 2

2

2

0

1
ds dr ' r ' d dt '

r '
1 k

 
 
    
 
 

 

K

R

. (4.1) 

Here, K  is the position-independent but time-dependent scale factor, and   is the 

solid angle. k is the curvature parameter, which can take the values of 1, 0, -1 according to 
the FRW classification. For k 1 , the spatial curvature of the cosmos is supposed to be 
positive, and the cosmos is closed. k 0  is called a flat and open space, and k 1   a 

negatively curved and open space. 0R  is a constant that can be absorbed by r ' .  r ',t '  

are comoving coordinates. In particular t '  is the cosmic time, which is the same for all 

observers. If the metric factor is 
4'4'g 1 , then the coordinate time coincides with the 

proper time for comoving observers. We call the form (4.1) of the metric the canonical 
form. 

The fact that the universe is expanding in free fall is only given as a side note in the 
relevant papers. The consequences for the mathematical structure of a cosmological 
model are not discussed. Lemaître showed that for free fall in the Schwarzschild field and 
also for the particle swarm of the dS cosmos, there is a coordinate transformation, 
associated with observers in free fall. In this process, the shape of the metric changes 
from type k 1  to type k 0 . This means that a free-falling observer feels no gravitational 
forces and believes space to be flat. 

We are therefore critical about the interpretation of the quantity k as a curvature 
parameter and prefer to call it the form parameter of the metric. According to Einstein's 
elevator principle, which is also valid for cosmology [9], the space is locally flat for a free 
falling observer, but nevertheless globally curved. Therefore, in the Eq. (4.1) we have to 
set k 0 . It remains: 

 
2 2 2 2 2 2ds dr ' r ' d dt '     K . (4.2) 

Our further considerations will be based on this relation. 

However, the metrics appearing in the literature under the name FRW models allow 
the values k 0 , which contradicts the cosmic elevator principle. We have called them 
hybrid models [18]. If we use a Lorentz transformation by means of the recession velocity 
of the galaxies and proceed with this to a non-comoving system, we will arrive at a chaos 
of formulae that can hardly be assigned any physical meaning. 

In papers on cosmology, the case k 0  is also interpreted in such a way that the 
space is globally flat and therefore infinite. The Hubble law suggests that galaxies could 
move with superluminal velocity. Thus, in this case, no information exchange between the 
galaxies would be possible and it would come to a galactic island formation. Superluminal 
velocities are admitted with the argument that the galaxies remain in their position, 
however, the space expands. 
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We are reserved towards this scenario, since we think that whether galaxies are 
moving away from each other because of forces acting on them or because space is 
expanding is irrelevant. The laws of special relativity must be valid in both cases. This 
inevitably leads to the assumption that the space must be positively curved and closed. 

If an observer defines his position as a pole on the hypersphere, the equator will be 
his cosmic horizon. From this observer’s view, the receding galaxies would reach the 
velocity of light at this location, but only after an infinitely long time. 

The Friedman model, from which many expanding models are derived, is physically 
unsatisfactory because it is pressureless. Since the cosmos with its galaxies is regarded 
approximately as a space that is uniformly filled with matter dust, the expectation from a 
realistic model is that the stress-energy-momentum tensor will contain pressure. But the 
pressure is manually inserted into the stress-energy-momentum tensor on the right-hand 
side of the field equations, and the left side of the field equations is observed for its 
output.. 

Since such a differential equation system is underdetermining, in the solution of the 
field equations, free quantities remain, especially in the Friedman equation that describes 
the expansion of space. In the FRW models, these are the quantities Ω and the 
deceleration parameter. The latter contains an acceleration term that indicates forces that 
contradict Einstein's elevator principle and cannot be derived from the lapse function of the 
metric. 

The existence of free quantities opens a wide field for fitting astrophysical 
measurements into these models by juggling these quantities. These models are called 
standard models, but they are not exact solutions of Einstein's field equations. 

The Rh = ct model of Melia [19] and our Subluminal Model [20] are exact solutions 
of Einstein's field equations. Pressure and mass density result from the geometry of the 
models. The two models start from different approaches but ultimately lead to the same 
results, as shown in [21]. Here, we outline the main properties of our Subluminal Model. 

We assume that the space in which we live in is a 3-dimensional hypersphere that 

expands. Its radius  tR R  depends on time. The mathematical framework for this model 

is based on well-known methods of surface theory. A short presentation can be found in 
Appendix B. To better understand the geometry of the Subluminal Model, only Eq. (B.5) 
needs to be adapted to the features of the model. 

It should be remembered that the line element of the model only describes the 
curvature of space in terms of Gauss but not its change. For the latter, a second system of 
differential equation is needed, i.e., the Bianchi identities. In contracted form, they lead to 
the conservation law of the model and provide the change of the quantity R  in time. The 

radius of curvature of the hypersphere R  is the only and also necessary free parameter of 

the model. 

The quantities  |4 '

1
K

K
are derived from the tetrads of the line element (4.2). If we 

integrate the scale factor K  by means of 
0 0, const. R KR R  into the space curvature, 

we must consider the expression |4 '

1
R

R
. Let us anticipate the result of this term. From the 

conservation law we obtain relations which can be applied to the Friedman equations (with
c 1 ) 

 1, 0 R R . (4.3) 



 11 

They state that the universe is expanding linearly, i.e., the expansion is not accelerating. 
This contradicts the results of Perlmutter and Riess, who interpreted their astrophysical 
data with an FRW model. 

However, recent measurements from the PLANCK project have yielded values that, 
despite manipulation of the Ω parameters, cannot be fitted into the possible range of FRW 
models. Melia, on the other hand, proposed in a paper [22] that the results of the PLANCK 
project can be made consistent with a linear model. In his article, Melia also noted that the 
FRW models contain 10 paradoxes and inconsistencies related to 27 different types of 
observations. 

According to the present state of science one can exclude the FRW models as a 
possibility to describe Nature. This is not only true because of their formal inconsistencies, 
but also because of their lack of agreement with astrophysical data. 

To convince ourselves of the correctness of the relations mentioned in [20], we need 
only to consult the appendix B. In it the surface theory is formulated with the help of the 2nd 
fundamental forms. We have for the 2nd fundamental forms of the expanding hypersphere2 

 mn m n

i
D *g 

R
  (4.4) 

and only have to consider the time dependence of R  in the relations of Appendix B. 

With (4.3), the calculations are simple. In Appendix B, we have shown that the 
quantity *R  in (B.5) vanishes. Using the tetrad derivatives given there and the constituents 
of the spatial components of the Ricci-rotations coefficients from (A.4), we can show that 
the first brackets in (B.5) also vanish. The Codazzi equation contained in (B.5) 

 [ ]D 0

 
   (4.5) 

is trivially satisfied by (4.4). The Gaussian equation becomes 

 
2

1
R g g g g 0

    
    R

  (4.6) 

and confirms that the space is globally curved. From (B.5) and (B.6) then only remains 

 

|4

44 |4

|4

R D D D

R D D D

R 2D D D D D



   

 

 

   

   

  

  

   

 . (4.7) 

Eliminating the terms with the time derivatives using the Friedman equation (4.3), we have 
for the Ricci and the Einstein tensors 

 
442 2

44 02 2

2 6
R g , R 0, R

1 3
G g pg , G

 

  

  

       

R R

R R

  (4.8) 

and finally the fundamental relations for the subluminal model. In [21] we have shown that 
the fundamental relations for the dS cosmos can be derived from this with const.R . 

 

                                            
2
 Here, the primes used in (4.2), are omitted. The asterisks denote the space-like part of the metric. 
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5. CONCLUSIONS 

 

We showed that a linearly expanding model, i.e., a model whose expansion is not 
accelerated, can be derived from elementary relations of surface theory. We used the 
embedding theory for an Mn in an Mn+1, developed by the Italian mathematicians, 
especially by Levi-Civita, and represented by means of the 2nd fundamental forms. First, 
we put this theory into a modern form using the tetrad method and then applied it to a 
hypersphere. For a constant radius of the hypersphere, the dS cosmos was obtained, and 
for a time-dependent radius, our Subluminal Model was obtained. This gave the Gaussian 
curvature equations, the Codazzi equations and, finally, the physical relations describing 
the pressure and matter density of the universe. Both the dS and our Subluminal Model 
are exact solutions of Einstein's field equations. The latter does not require any additional 
parameters to fit astrophysical data to the models. 

 

6. MATHEMATICAL APPENDIX A 

From the Ricci-rotations coefficients for a pseudo-hypersphere we obtain the field 
quantities  

      m m m

1 1 1 1
B cot ,0,0,0 , C cot , cot ,0,0 , U tan ,0,0,0

sin

    
            

    R R R R
. (A.1) 

Here, U is a quantity pointing in the radial direction (1-direction)3. 

The coordinate transformation of Lemaître has the form: 

 ' 'r r ', e , ' lncos , e e cos , t ' '          K K R . (A.2) 

The 4-beine of the comoving system are: 

 
4'2' 3'1'

1' 2' 3' 4'e , e r, e r sin , e 1, r r '     K K   (A3) 

The field quantities in the comoving system 

 
m' m' m'

i 1 i 1 1 i
'U 0,0,0, , B ,0,0, , C , cot ,0,

r r r

     
           
     R R R

 (A.4) 

are calculated with 

 
1 i1 '

14 1 |4 '1 |4

1 1 t ' i
'A e e e i

e i t ' t '





 
       

 
K

K R R
. (A.5)  

The inhomogeneous transformation law with L as matrix of the Lorentz transformation of 
the Ricci-rotations coefficients is: 

 
s' m n s' s s' s' s' s

m'n' m'n's mn m'n' m'n' s n'|m''A L A L , L L L   . (A.6) 

 

                                            

3
 

4 4 t t

1 41 t1 t1

1
x it, U A A , A tan      

R
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7. MATHEMATICAL APPENDIX B 

 

This appendix presents the mathematical structure of expanding surfaces using the 
2nd fundamental forms of surface theory. We assume that the models discussed, contain 
expanding 3-spheres, whose rigging vectors 

  mu 0,0,0,1   

are time-like and perpendicular to the 3-sphere, i.e., perpendicular to its tangents. We 
define a symmetric spatial quantity as follows: 

 n

mn m||n [mn] mnD u , D 0, D u 0   . (B.1) 

Obviously, this quantity is part of the Ricci-rotation coefficients A: 

 s 4

m||n m|n nm s nm mnu u A u A D     .  

By separating this quantity from the Ricci-rotation coefficients, we obtain 

 s s s s s s

mn mn mn mn m n mn m(ns)A A D , D D u D u , D 0     . (B.2) 

Here, the *A  are some spatial components of the Ricci-rotation coefficients. By 
performing this decomposition in the Riemann 

 s s t s t s

rmn [m n | r ] [m n r]t [m r] tnR 2 A A A A A
   

     , (B.3) 

we obtain 

 

s s s t t s

rmn rmn [r m]n |t m] tn

s s t s s t s

n [m r ] [m n r ] n [r m] t [m r ] tn [m r ]n

R *R 2n *A u D *A

2 u D D u u u D D u u D D 2D D
  

    

      

. (B.4) 

The quantity s

rmn*R  is written with *A  analogous to (B.3). Here, the derivative with respect 

to *A is defined by 

 s

m n m|n nm s m n*A , u 0
 

     .  

By contracting the Riemann, we get the Ricci tensor 

     
s t t s s s s rs

m n m n m sn |t s tn n [m s] mn s m n s m n rsR *R u *A u D *A 2u D D u D D u u D D
 

         . (B.5) 

By contracting again, we obtain the Ricci scalar 

 n s rs n s

n s rs n sR *R 2D u D D D D


    . (B.6) 

When applied to the models discussed, these formulae are drastically simplified. 

That the quantity 

 
s s t s t s

rmn [m n |r ] [m n r]t [m r] tn*R 2 *A *A *A *A *A
   

      (B.7) 

vanishes is to be assumed, because it is built up from the two field quantities 
m'*B  and 

m'*C , which describe a locally flat geometry. We take the first three components from the 

expressions of the pseudo-hypersphere from (A.4). We recall the relation between 
noncomoving and comoving coordinates r r ' K  and differentiate using the tetrad calculus 
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with 
1' r '   K  and 

2' r '   K . Thus, we obtain the curvature equations of the two 

cuts on the hypersphere and thus, if we again omit the primes at the indices: 

 s

rmn mn*R 0, *R 0, *R 0   . (B.8) 

For the 3-dimensional part in (B.4) only the Gauss equation remains 

 R D D D D
    

  , (B.9) 

which indicates that the 3-dimensional subspace of the model is positively curved. 

 

 

8. MATHEMATICAL APPENDIX C 

 

From (II.2.3), we read the components of the 5-bein 

 
0 1 2 3 4

0 1 2 3 4e 1, e , e sin , e sin sin , e cos        R R R R  (C.1) 

and can immediately calculate from it the reciprocal components. The lapse function 
4

4e  is 

space-dependent and leads to the field strength U. The unit vectors in the local system 
are: 

        a a a am 0,1,0,0,0 , b 0,0,1,0,0 , c 0,0,0,1,0 , u 0,0,0,0,1    .  

The Ricci-rotation coefficients split into: 

 

c c c c c

ab ab ab ab ab

c c c c c c

ab a b a b ab a b a b

c c c c c c

ab a b a b ab a b a b

A M B C U

M m M m m m M , B b B b b b B

C c C c c c C , U u U u u u U

   

   

   

. (C.2) 

The field strengths therein have been derived from the curvatures of the pseudo-
hyperspheres 

 

a a

a a

1 1 1
M ,0,0,0,0 , B , cot ,0,0,0

1 1 1 1 1
C , cot , cot ,0,0 , U , tan ,0,0,0

sin

   
     
   

   
        

   

R R R

R R R R R

. (C.3) 

, sin , sin sin , cos   R R R R  are the curvature radii of the normal and inclined slices of 

the pseudo-hyper surfaces. The 5-dimensional field equations 

 
abR 0  (C.4) 

decouple to the individual curvature equations 
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1 1

2 2

3 3

4 4

c c

a|||b a b |||c c

c c

a|||b a b |||c c

c c

a|||b a b |||c c

c c

a|||b a b |||c c

M M M 0, M M M 0

B B B 0, B B B 0

C C C 0, C C C 0

U U U 0, U U U 0

   

   

   

   

, (C.5) 

where the graded derivatives were defined by 

 
1 2

3 4

c

a|||b a|b a|||b a|b ba c

c c c c c

a|||b a|b ba c ba c a|||b a|b ba c ba c ba c

m m 0, b b M b 0

c c M c B c 0, u u M u B u C u 0

    

        
.  

In four dimensions, the curvature equations do not decouple any more. If one 
accomplishes a dimensional reduction by shifting all 0-components of the Ricci tensor to 
the right sides of the relations, we obtain with m = 1,2,3,4 

  

 

 

 

2 2

3 3

4 4

s s

mn n||m n m n m ||s s

s s

n||m n m n m ||s s

s s

n||m n m n m ||s s

n m 0 0 0 0 0 0

n m 0 0 0 0 0 0

n m 0 0 0 0 0 0

n m 0 0 0 0 0 0

R B B B b b B B B

C C C c c C C C

U U U u u U U U

m m M B M C M U

b b B M B C B U

c c C M C B C U

u u U M U B U C

   
    

      

   
   
      

   
   
      

  

  

  

  

. (C.6) 

The right side of (C.6) can be significantly simplified with the help of (C.3). 

The 0-components of the curvature quantities can be interpreted as 2nd fundamental 
forms of the surface theory 

 
0 11 0 22 0 33 0 44M A , B A , C A , U A    .  

Doing so, we have adjusted the 5-dimensional notation to the methods of the 2nd 
fundamental forms. 
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