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1. INTRODUCTION 

We present a gravitational model for a stellar object based on an oblate ellipsoid of 
revolution. The properties are closely related to the properties of the Kerr geometry. 
Instead of starting with a metric and specializing the coefficients to provide the desired 
model, we face a surface and calculate the radii of the curvature of the normal and oblique 
slices on that surface. With these we calculate the curvature equations of type  

2

1 1
0

r r r


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
 and combine them to form the Ricci. From the Einstein tensor, we derive the 

stress-energy-momentum tensor and check whether its divergence vanishes. 
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Equally, if a model can be geometrized, i.e., represented by a surface, the Ricci can 
be decomposed into subequations that describe the curvatures of the surface. This 
provides a deeper understanding of the model. For the exterior Kerr theory, we described 
this methodology in detail in one of our papers [2] and supported it with drawings. 

To be able to use this procedure, it is necessary to carry out the theory in tetrad 
calculus. As a consequence of this methodology the above-mentioned curvature quantities 
turn out to be components of the Ricci-rotation coefficients. In addition, the original 

Minkowski notation  4x i c t  must be retained. 

 

2. THE ELLIPTIC-HYPERBOLIC ANSATZ 

Since we want to describe the interior of an elliptical stellar object, we choose an 
oblate ellipsoid of revolution as the basic element of the theory with the metric 

 2 2 2 2 2 2 2

H H E E C Cds d d d       . (2.1) 

The families of ellipses that parametrize the object are confocal and have the 
eccentricity a const. . The orthogonal trajectories of the ellipses are hyperbolae. They fix 

the 'radial' direction of the model. Here, 
H  are the radii of curvature of the hyperbolae, 

E  

are the radii of curvature of the ellipses, and 
C  are the radii of curvature of the circular 

sections of the ellipsoid of revolution. 
H  and 

E  are the ascent angles of the curvature 

vectors, and 
C  the angles at the circular slices. As the radii 

H  and 
E  are orthogonal, 

one has 
d

E Hd d d     . 

Using the formulae and definitions (A1) and (A2) in the appendix, we record the 
metric in the usual Boyer-Lindquist coordinates: 

 2 2 2 2 2 2 2

Rds a dr d d     , (2.2) 

an expression familiar with the Kerr metric. Then we curve the space by introducing the 
following quantities 

 2 2 r
cos 1 r , sin , r     R R

R
. (2.3) 

We try an embedding into a 4-dimensional flat space of class one with the Cartesian 

coordinates a'x   

 

0 ' 2 2

1'

2 '

3 '

x r

x r cos

x A sin cos

x A sin sin

  

 

  

  

R

. (2.4) 

Suppressing the third dimension and choosing the negative sign in (2.4) gives the 
following surface: 
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Fig. 1. The elliptic-hyperbolic surface 

R  is the radius of the circular arc at the minor semi-axes of the ellipses. All 

individual 'radial' curves have hyperbolic contributions in their properties. For r = 0, A = a, 
the horizontal ellipses are reduced to a distance clamped in by the common foci of the 

ellipses. If one now adds the third dimension, these points rotate through φ. For 2    

there emerges a circle. The radius of curvature of the ellipses is zero on this circle, and the 
assigned field quantities are infinitely large. This is the Kerr ring singularity. 

Restricting ourselves to the first two dimensions of (2.4) and to the minor semi-axes 
of the ellipses we have 

 
0 ' 1'

2

2

r 1
dx dr tan dr, dx dr

r
1

     


R

R

  

and 

 
2 20' 1' 2

2 2

2

1 1
dx dx dr

r cos
1

  



R

  

Thus, we obtain a surface with a positive curvature parameter k 1 . Writing down the full 
line element we recognize that it does not have the desired structure. 

Here we must bear in mind that dr is the increase of the minor axes of the ellipses 
on the base plane of the surface. We define the quantity 

 1

Rdx a dr   (2.5) 

depending on the angle  . This quantity is the distance between two infinitesimal 
neighboring ellipses. If one pulls up elliptical cylinders on two such ellipses in the base 
plane, one can see that their cutting curves with the surface do not lie on the horizontal 
slices of the surface. During circulation on the surface, the points of the cutting curve 
oscillate. 

For our model only the horizontal elliptical slices of the surface are important. If one 
follows the normal vector of the surface along an ellipse, one will discover that this vector 
also oscillates along its way, because the walls of the surface are round about differently 
precipitous. To be able to use the surface, it must be equipped with an additional structure. 

On the minor axes of the ellipses the elliptical factor is 
Ra 1 , and the geometry is 

Schwarzschild-like. We make a start, and we define a rigging vector in such a way that it 
coincides with the normal vector at this position and that it always encloses the same 
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angle with the base plane during circulation. Then, this rigging vector is no longer vertical 
to the surface and its vertical planes are no longer tangent to the surface. The family of all  
these planes – and if one adds the φ-dimension, the family of the 3-dimensional 
hyperplanes – represents the graphic space of the model. These hyperplanes are 
anholonomic and are the local spaces for the geometrical quantities derived from the 
metric. A similar problem occurs with the exterior Kerr metric. In [1] we described the 
problem in more detail and supported it with a drawing. Finally, we enhance the geometry 
with a time-like dimension and end up with a metric 

 2 2 2 2 2 2 2 2 2 2

I R T Ids a dr d d a dt , 1 cos           (2.6) 

which will serve as a metric for the model, we want to investigate. 
Ta  is the lapse function 

of the new metric and will be discussed later on. 

3. THE FIELD QUANTITIES  

As our model can be embedded into a 5-dimensional flat space, it is convenient to 

note the 5-dimensional components of the field quantities (a = 0,1,…4). Here, 0x  is the 
local extra dimension. The elliptic, hyperbolic, and circular curvature quantities are as 
follows: 

 

a a

E E H

a |a

1 1 1
B sin , cos ,0,0,0 , N 0,0, ,0,0

1 1 1 1
C sin sin , sin cos , cos ,0,0

   
      

     

 
        

    

. (3.1) 

The curvature radii are noted in (A3). As a consequence of curving space an additional 
field quantity appears, its only component pointing into the local 0-direction 

 a I R

I

1
M ,0,0,0,0 , a

 
   

 
R . (3.2) 

  Here, const.R  is the curvature radius at the semi-axis of the ellipses, where the 

elliptical factor 
Ra 1 . For 

Ra 1 , everywhere the surface would be the cap of a sphere 

with radius R  and would represent the interior Schwarzschild solution. 

It is evident that the norms of all these field quantities are reciprocal to the curvature 
radii. The field quantities are components of the Ricci-rotation coefficients. For dimensional 
reduction, it is sufficient to omit the first components in the brackets. In the appendix, we 
note some relations that we need to solve the field equation. 

Having explained the curved elliptic-hyperbolic system and its embedding into a flat 
5-dimensional space we specify the lapse function 

  
2 2

g2 2 2

T g g g g 2 2

g

r a1
a 1 2 cos cos , const.

2 r a




          
  

. (3.3) 

Here, 
gr  and 

g  are constants. Evidently, for a 0  one has 2

g 1  , and 
Ta  is reduced to 

the lapse function of the interior Schwarzschild metric. As usual, we derive the force of 
gravity from the lapse function. If we move on the base plane in the direction (2.5) and 

calculate 
T|1a , we get a quantity normal to the base plane 
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 2

1 T|1 G R g

T G T

1 1
E a , 2 a

a a
      


R ,  

which we project in the local 0- and 1-directions: 

 c

G T G T

1 1
E cos , sin ,0,0,0

a a

 
    

  
. (3.4) 

The component 
1E  is pointing inwards, i.e., it is attractive. Consequently, for a 0  this 

quantity is reduced to the force of gravity of the interior Schwarzschild solution. 

Now, we have all field quantities at hand, and we need to calculate the Ricci and the 
Einstein. If we apply the graded derivatives [1] to the field quantities, we obtain curvature 
equations that can be composed to the 5-dimensional Ricci, which evidently has to vanish. 
Separating all 0-components and shifting them to the right of Einstein’s field equations, we 
obtain the 4-dimensional stress-energy-momentum tensor of this model. We have 
outsourced this procedure to a paging file that can be downloaded by the interested reader 
from http://arg.or.at/PendingPapers/HiElp.pdf. 

This model can probably serve as a source for an elliptic galaxy. Here, the problem 
arises that a non-spherical region should be embedded in a spherical environment. Many 
unsatisfactory attempts have been made to solve this problem. Recently, a promising 
ansatz was made by Huber [3] to match two regions with different symmetries by 
deforming the adjacent boundaries of these regions. This might apply to this cosmological 
problem. 

The model developed thus far may provide a static seed metric for a Kerr interior. 
As all ellipses, hyperbolae, and circles defined by (2.4) are the same as for the Kerr 
exterior surface we are able to combine these surfaces. From our new surface a band has 
to be cut off and the remaining surface has to be matched horizontally to the surface of the 
exterior Kerr metric. Thus, one obtains a surface for the complete Kerr seed metric. We 
demonstrate this in Fig. 2 and Fig. 3. 

 

  

Fig. 2. Complete Kerr surface        Fig. 3. Ground plane 

 

http://arg.or.at/PendingPapers/HiElp.pdf
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We also admit a look at the center of the surface: 

 

 

Fig. 4. Center of the interior surface 

Now we have to check the linking conditions. It is evident that the hyperbolae and 
circles are continuous from the interior solution to the exterior solution. However, the 
'radial' lines not only have a hyperbolic curvature, but also a 2nd curvature due to the 
curvature of space. There are numerous approaches in the literature for calculating the 2nd 
linking condition, which, however, prove to be less applicable for models that can be 
geometrized, i.e., they can be represented graphically by surfaces. We have shown in [4] 
that there is a simple solution for these models: at the boundary, the trestle lines of the two 
surfaces must have the same tangents (cutting tangents). 

According to (2.4) we write for the extra dimension 0 'R x , we differentiate with 
respect to r, and we obtain 

 
dR r

dr R
  .  

Since 
2 2R 1 r cos    R R R  and r sin R , we finally get 

 
2

2

dR 1
tan , tan

dr
1

r

    


R

  

for the lower part of the surface (2.4). 

For the exterior Kerr solution [1] we found the ascent of the Kerr surface to be 

 2 2 2

2

2Mr
tan , A r a

A 2Mr
    


,  

with M as the mass of the field-generating source. If the ascents of the surfaces should 

coincide at the boundary 
gr r , it follows from 

g gtan tan    

 
g

g

r
A

2M
R . (3.5) 

This relation fixes the size of the cap matched to the exterior surface. For a 0 , one gets 
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3

g

g

2r
2

M
  R ,  

where 
g  is the curvature radius of Flamm’s paraboloid at the boundary and 

g 2  R  is 

Flamm’s equation found in 1916. 

Finally, we have to investigate the linking condition of the time-like part of the 
model. We write the time-like arc element as 

 4

T T gdx a idt a di    .  

Here, 2

g g2 const.   R  is the curvature radius of the radial lines of the exterior Kerr 

surface [1] at the boundary. Thus, one obtains with (3.3) 

  4 2

g gdx 1 2 cos cos di       
 

R R ,  

that is the arc element of two (open) pseudo circles. At the boundary surface, one has 

 4 2

g g g gdx 2 cos di cos di       R   

which coincides with the corresponding expression for the boundary circle of the exterior 
surface. Thus, the 1st linking condition is satisfied. As the two pseudo circles coincide, they 
have trivially the same tangent and the 2nd linking condition is also satisfied. 

In the paging file we have calculated the stress-energy-momentum tensor of the 
model. The pressure is anisotropic due to the axial symmetry of the source. We have 

 

1 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

p C B C E B E

p 2M C C B M E B E 2C E

p 2B B 2M B C B M E C E

2B B 2M C 2M B C B

   

      

     

     

. (3.6) 

For a 0 , one obtains the values of the Schwarzschild interior solution. However, the 
greatest mathematical effort was the proof of the conservation law for these quantities. We 
performed the calculations in the paging file, and proceeded step by step. We first treated 
a simplified model, brought it into final form, and verified the conservation law. 

Evidently, all three pressures contain the quantities 
0E  of (3.6) having the lapse 

function (3.3) in the denominator. In the center of the source one has r 0, 0, cos 1     . 

For 
Ta 0 , the quantity 

0E  blows up and the pressures would be infinite. Thus, for the 

surface of the object with 
gr r , there is a limit min

gr  for its extent given by 

 

2

g2

g g2 2

g

r1
cos , cos 1

1 2
    

  R
. (3.7) 

 As a consequence, the stellar object cannot shrink beyond min

gr  and a continuous 

contraction to the center is impossible. The same should hold for a rotating version. We 
expect that the final state of a collapsing Kerr interior cannot be a black hole but rather a 
RECO (Rotating Eternally Collapsing Object). 

From (3.7), we obtain for a 0  the relation 
gcos 1 3  , which leads to the well-

known Schwarzschild limiting value 
min

gr 2.25M . We [5] showed that the collapse of the 
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Schwarzschild interior indeed leads to an ECO (Eternally Collapsing Object). Mitra [6] 
covered this problem in full in his textbook. 

The question is how to extend this model to a rotating model and match it to the 
exterior Kerr solution. In an earlier paper [7] we presented a trial solution. In doing so, we 
extended the differential rotation law of the exterior metric to the interior, which caused a 
high-velocity problem. Certainly, Nature does not support such behavior of a stellar object. 
The required task would be to find a better ansatz for a rotating model. 

Rotation is implemented into the Kerr model by an anholonomic transformation of 
the coordinates. In general, for anholonomic geometry, Bianchi identities differ from the 
Riemannian structure. They exhibit additional terms, and their contractions do not lead to 
the conservation law of the model. We [8] studied this anholonomy problem and showed 
that for a rotation into the  -direction, the Bianchi identities take the common Riemannian 

structure, although they contain anholonomic contributions. This has no meaning for the 
exterior solution because it is a vacuum solution, and the stress-energy-momentum tensor 
vanishes. In contrast, for the interior solution we have to convince ourselves that a 
conservation law exists despite anholonomy. 

To construct a rotating Kerr interior several conditions must be fulfilled. The interior 
seed metric has to match the exterior seed metric, and the 1st  and 2nd linking conditions 
have to be satisfied. The radial pressure at the boundary surface has to vanish to 
guarantee a stable object. Further, the anholonomy properties of the rotational effects 
should be well behaved. 

 

4. CONCLUSIONS 

We have proposed a curved elliptic-hyperbolic model that is a candidate for the 
seed metric for a Kerr interior. The model satisfies both the 1st and 2nd linking condition. it 
can be geometrized, i.e., represented graphically by a surface matching the exterior Kerr 
surface. The main problem was to set up the field equations and to prove the conservation 
laws. As this requires a remarkable amount of algebra, we decided to outsource these 
calculations in a paging file. We hope that we have given a functional starting model for a 
genuine Kerr interior. 

 

5. APPENDIX 

The transition to the Boyer-Lindquist coordinates can be established with 

 C C

r A
sin sin , cos cos , ,           

 
. (A.1) 

Here, r  is the measure on the semi-minor axes, A  on the semi-major axes of the 
ellipsoids,   is the geometrical mean of the focal rays and   is the radius of the circular 

sections with the correlated angle  . 
Ra  denotes the elliptical factor. Details can be found 

in [1]. We note 

 2 2 2 2 2 2 2

RA r a , r a cos , a A        . (A.2) 

The curvature radii in Boyer-Lindquist coordinates are 
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3 3

E H C I R2
, , Asin , a

rA a sin cos

 
           

 
R . (A.3) 

We note some derivatives of the basic quantities 

 

 

 

   

 

|a R |1 I R

*
|a 0 1 2

E E H

*
|a |a 0 1

c

a |a c

|a

H H E

r sin ,cos ,0,0,0 , r a ,

1 1 1 1
sin , cos , ,0,0 B ,B ,N ,0,0

r 1
A sin ,cos ,0,0,0 , A C ,C ,0,0,0

A

sin sin ,sin cos ,cos ,0,0 , 1

1 1 1
sin , cos , ,0,0

     

 
     

    

   


           

 
      

   

. (A4) 

For evaluating the field quantities we need the following relations 

 

   

 

2 2 2 2

E|0 E E|1 E

E H
E|2 H|1

H E

2
2 2 2

4

1 sin , 1 cos

3 , 3

a
sin cos

           

 
   

 

    


. (A5) 
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