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SCHWARZSCHILD GEOMETRY, ONCE MORE
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Schwarzschild geometry exhibits interesting features when the field
equations are decomposed with respect to a system of freely falling
observers. We only use quantities behaving like tensors under a
restricted group of transformations of the reference system. More-
over Lorentz transformations with non- constant velocities drastically
change the physical picture of the theory.
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1. INTRODUCTION

The Schwarzschild solution describing a static spherical sym-
metric gravitation field was the first solution of the Einstein equation.
Although it has been explored for more than seven decades it is still
topical.

In our opinion, gravitation theory suffersfrorn being presented
in a highly coordinate dependent manner a^nd has only ma,rginal simi-
Iarity to other field theories. We try to improve the situation by using
tetrad formalism and quantites behaving as tensors under restricteil
transformations of locally defined tetrad fields. These tensors a.re
the field strength, energy and stresses of the gravitation field. As
the field equations are non-linear it ca^n be shown that quadratic
constructions of these tensors a,re responsible for effects of selfgravi-
tation. Under more general transformations the quanties mentioned
above are subjected to an inhomogeneous transformation law and
the physical picture of the theory cha^nges considerably.
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2. THE FREELY FALLING SYSTEM

In their textbook, Misner, Thorne, and Wheeler [1] illustrate
in detail all the tortuous influences a freely falling observer is sub-
jected to. In the radial direction the observer will be stretched be-
tause of the gradient of the gravitation field (tidal forces [2]). Also
he will be squeezed, because the trajectories of the field are converg-
ing to the center of attraction. We will now describe these forces
in detail. We strictly reject the use of global coordinates and use
local tetrad fields instead. This simplifies many calculations a.nd
makes all quantities accessible to an immediate physical interpreta-
tion. A 4-bein consists of rods and clocks and the components of a
tensor are values measured by these rods a,nd clocks [3]. The tetrads
eio(a : 1,...,4 is the index labelling vectors and i : 1,...,4 denote
tlie holonomic coordinates of these vectors) are comoving with the
freely falling observers. The fourth of these vectors is timelike, and
its coordinate invariant components a,re

t, : "t"'": {0,0,0, 1}.

A second tetrad is static. It is tied to three-dimensional space en-
closing the center of attraction. Its fourth member

u* : ele'* - {0,0,0, 1},

rn: l'r...14', is timelike and orthogonal to the other vectors [4].
Both systems are related by a generalised Lorentz transformation (a
transformation with nonconstant velocity parameters) operating on
the tetrad components. These two kinds of systems are relatively
accelerated, and the components of the tra,nsformation matrix are

A!n. : At' : iao,A!, : AL' - -iau,AL, : Al' : At. : At' : o,

u : u(r) : -\EM lr, d : ll \F-rMlr.
(2.1)

Using Schwarzschild's spherical coordinates (r, ,9 , g ,t) for both
systems, the components of the static 4-bein are (o : rsinr9):

"1. 
: Ilo,, e7, : !lr, 

"3, 
: Llo, e44, : a,

"l':o., "3':r, "3':o, et':Lla.
With the help of (2.I,2.2), we a,re able to calculate the time-

like derivatives with respect to the freely falling system,

(2.2)

. a_: _?u;_(Dr
or

Oln : .4|'O;r. Oln : -i@', O' : (ugrad)O.
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The quantities

Bo : {Lf r,0,0,0}, So : {Lf r,(l/r)cotd,0,0}

The relative velocity of the two systems is u(r) : r* and is
pointing towards the center of acceleration. Defining a covariant
derivative with respect to the freely falling system,

@cllü : Oolü - Atf rb",

a.nd a second one with restricted tra,nsformation properties (rotations
in the three-dimensional subspace)

Ocaü : Qop -*Atot0.rAof -*Aob" * Dof ,Oc1ü : (Danö - Dbo"lD.,

one is able to calculate the connection coefficients using *"llki3fl
methods of differential geometry:

*Aob" : boB6b" - bob5B" * loSil' - lo165", Dob" : Do"tt - Dobt",

bo : {0, 1,0,0, }rIo : {0,0, 1,0}.
(2.4)

(2.5)

are the conventional spherical constituents of the three-dimensional
part of the flat connection,

Dob : tollb : -Dbo"t.rD1ot1 : 0, to Da :0, Dootb : 0 (2.6)

a,re the deformation field strength [5] formerly mentioned. They are
a consequence of the curvature of time. The only components are

Dr, : !. Dzc : -i!.Dr, - -i' .2r' r r

The curvature tensor of this connection is

(2.7)

Raof :zlAu.o'avt- Ap.f.Aa1;l =r[Dt,.0".,.01 - Dp"lDoa" - D1o.ro.D4ff

:zfop"nat6- Dp.a.ndf" +tpDof Do"tt*tpDof Doü" + novD,il,

arrd the identity R1a"f : 0 leads to
(2.8)

(2.e)Dpialtu t D1f,n"1t a I Dp"n61t 
" 
: 0
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or, multiplicated with tö, to

furghrrdt

D1."r,q :0, (2.10)

the bar denoting projection on the three-dimensional space (the set
of hyperplanes orthogonal to tö). In (2.8) we have made use of the
fact, that the three-dimensional space is flat:

'Ropj : -zf*Aa'.j.np1-*A1.'.f..Äp1"ö] : 0, a: L,2,3'

The four-dimensional extension of this qua^ntity including the
time derivative is not flat, of course:

*Ranf :zDp"t *Aor"i

and by contraction we get the Ricci tensor

*8oö : 2Dbol *Asc". (2.tto)

We now contract (2.8) a,nd simplify this new relation with
(2.11a), and then we split into space-like and time-like parts:

Rot: -Doba.t" - DotDt,
Rgttb : Dntn"- D.|o,

Rofi"tb : -D"|otn - ioaD"b.

Introducing the quantity

Ooö : Dnhr"t" * Df Du,

we get with help of the vacuum field equations

(2.11b)

(2.12)

Ocö : rctn6rnto5: DiD.t - DtDot (2.13)

which has a well defined meaning. The deviation 6to of the time-like
geodesics tbtnllt - 0 may be calculated by

^D26dt:"#: ef(6ci)il" 6tntb : -Rtof 6adt"tb : @t6x" '
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With 6o" - {6r, 160,r sind6g}, the components

Ocö : {-2M /r3, M /r", M lr3,o}

are regular, except at r :0, and describe the relative accelerations
of leely falling poi-nts of unit mass. They cause a stretching in the
radial direction and a squeezing in the two other spacelike diräctions.
(See- also. the example in the textbook mentioned above [1].) The
accelerations are in equilibrium with the stresses [1]

Kta6 :2DfiD.1a. (2.14)

This quantity is a symmetric traceless tensor with respect to a re-
stricted transformation a"nd is locally conserved:

toö^a : 0, (2.15)

which may be provedwith help of (2.11b) and D"b Do6 - (D"")2. The
relations (2.14) arf4- (2.15) are of coursi destroyed by mbrö general
transformations. What happens in performing (2.1) will be diJcussed
briefly in the next section.

We expect from a general, relativistic theory that form and
physjca! coltelt of equations describing the natuie of gravitation
will be highly dependent on the choice of the local referenlce system.
Flom the vacuum field equations, one may also extract

D1o"^"1 :0,

which has some similarity to Ma>rwell's equstions [6]. The time-like
pa,rt of the field equations

Ro6t"tb - -Oj
confirms that O is traceless. Rewriting the equation above as

D"|ot" -DobDo6-0,
the time-like part of the field equation appears in a kind of Maxwellia,n
form.
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3. THE STATIC SYSTEM

Using a second system remaining at rest with respect to the
center ofgravitational attraction, one has to calculate the field strength
with the help of (2.1) and the inhomogeneous tra,nsformation law

G 
^,1 

: AkA!"AiA"f + t; n",r*.

The transport laws are

(b^;, : O-1, - Gnr{Qr',Omnn : O-lr, -*AnrtrQr,
G*rl :*A^ri * E^r{ rE^r{ : u^rrE' - u,^Enu,'.

*A^,1 is constructed by analogy to (2.4, first line), but the
connection'is not flat. It contains the geometric quantities

B^: {11ar,0,0,0}, S^: {Lf o;r,(1/r)cotr9,0,0} (3.1)

endowed with some physical properties. The only pure physical
quantity is the negative force of gravitational attraction:

Eo : (lna)lo,,E^: {-aM1r2,0,0,01. (3.2)

The Riemann tensor has the components

R,^,! :21G6.,!,,1- G1^.,ic$l:*R,*X * E,^,!,
*R,*X :z1*Apn..'"ln,1** A6.,'. *Air'f 

,

E,*,! :2lE6.n!n,1- Ey^lGr,l - Ep.,!.84r',
:2furu1^fiPnrl - En6yu^1up a uruyE^lÜo - upuyE4Erf ,

and the Ricci tensor

R*n :*R^n * E^nrE1^n! :0, E1-nrr1 : 0,

E^n: Er^r{ : Ennm - ErE* { uru^lE"n, - E"Erl.

The spacelike part of the field equations then is

*RoB + Eog = 0, Eog : EBn.- - EpEo, a: tr2r3. (3.3)
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The three-dimensional Ricci tensor may be evaluated with *Ar/ and'

relations (3.1). Eop is similar to Oop of Chap. 2. Defining the
displacment vector

6x* : A{6x' - {0,6*' ,6r"' ,6rn'},

one finds, for a timelike geodetic deviation,

(6xP )rr.oru* un : - EPr6 x' .

The fourth part of the field equations exhibits the effects of
gravitational selfi nteraction:

or also

R*nu,*L!,n - E'n, - E"E,: Q

1

diuB:K€,€:ZE'Er,
K

(3.4)

(3.5)

The field energy is conserved with respect to local systems:
6' : 0. Mixed spacelike and timelike parts of the field equations va,n-
ish. There is no transport of field energy in the static Schwarzschild
system.

4. CONCLUSTONS

We have been successful in proving that Schwarzschild geom-
etry may be reformulated covariantly. Qua^ntities behaving like ten-
sors under restricted transformations satisfy field equations similar to
Maxwell's but enriched with energy-like or stress-like expressions sat-
isfying covariant local conservation laws. Generalised Lorentz trans-
formations considerably change the physical picture of the theory
and moreover the content of the energy-like expressions. The con-
servation laws mentioned above make sänse only if restricted (system
preserving) tra^nsformations are performed. Global coordinate sys-
tems do not have any physical meaning. They are used only to
perform some mathematical operations.
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