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Schwarzschild geometry exhibits interesting features when the field
equations are decomposed with respect to a system of freely falling
observers. We only use quantities behaving like tensors under a
restricted group of transformations of the reference system. More-
over Lorentz transformations with non-constant velocities drastically
change the physical picture of the theory.
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1. INTRODUCTION

The Schwarzschild solution describing a static spherical sym-
metric gravitation field was the first solution of the Einstein equation.
Although it has been explored for more than seven decades it is still
topical.

In our opinion, gravitation theory suffers from being presented
in a highly coordinate dependent manner and has only marginal simi-
larity to other field theories. We try to improve the situation by using
tetrad formalism and quantites behaving as tensors under restricted
transformations of locally defined tetrad fields. These tensors are
the field strength, energy and stresses of the gravitation field. As
the field equations are non-linear it can be shown that quadratic
constructions of these tensors are responsible for effects of selfgravi-
tation. Under more general transformations the quanties mentioned
- above are subjected to an inhomogeneous transformation law and
the physical picture of the theory changes considerably.
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2. THE FREELY FALLING SYSTEM

In their textbook, Misner, Thorne, and Wheeler [1] illustrate
in detail all the tortuous influences a freely falling observer is sub-
jected to. In the radial direction the observer will be stretched be-
cause of the gradient of the gravitation field gtidal forces [2]). Also
he will be squeezed, because the trajectories of the field are converg-
ing to the center of attraction. We will now describe these forces
in detail. We strictly reject the use of global coordinates and use
local tetrad fields instead. This simplifies many calculations and
makes all quantities accessible to an immediate physical interpreta-
tion. A 4-bein consists of rods and clocks and the components of a
tensor are values measured by these rods and clocks [3]. The tetrads
e’ (a=1,...,4is the index labelling vectors and : = 1,...,4 denote
the holonomic coordinates of these vectors) are comoving with the
freely falling observers. The fourth of these vectors is timelike, and
its coordinate invariant components are

t, = efel ={0,0,0,1}.

A second tetrad is static. It is tied to three-dimensional space en-
closing the center of attraction. Its fourth member

um = etel. ={0,0,0,1},

m = 1°,...,4°%, is timelike and orthogonal to the other vectors [4].
Both systems are related by a generalised Lorentz transformation (a
transformation with nonconstant velocity parameters) operating on
the tetrad components. These two kinds of systems are relatively
accelerated, and the components of the transformation matrix are

Ale = AY =iav, A% = A} = —iav, Al = A" = AL = A} =q,
v=uv(r) =—+/2M/r, a=1/4/1—-2M/r.
(2.1)

Using Schwarzschild’s spherical coordinates (r,9, ¢, t) for both
systems, the components of the static 4-bein are (¢ = rsind):

1 2 3 4
e1e = Lla, €, = 1fr, €5 =10, €4 =,

1° _ 2° _ . 3% _ 4 _
e] =a,€e; =r,€; =0, € =1/a.

(2.2)

With the help of (2.1, 2.2), we are able to calculate the time-
like derivatives with respect to the freely falling system,

&, = A @) = —iv%tb, &, = —i®°, @° = (vgrad)?.
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The relative velocity of the two systems is v(r) = r* and is
pointing towards the center of acceleration. Defining a covariant
derivative with respect to the freely falling system,

P = Papp — Apa oy

and a second one with restricted transformation properties (rotations
in the three-dimensional subspace)

Qal\b = @alb —*AbaCQC,Aabc =*Aabc + Dabc, Qa"b = (Pa/\b - Dbac¢c,
(2.3)
one is able to calculate the connection coefficients using well-known
methods of differential geometry:

YAy = ba Byb® — boby B + £S48 — £,0,S°, D¢ = D,°ty — Dgpt®,
b. = {0,1,0,0,},¢, = {0,0,1,0}.
(2.4)
The quantities
B, ={1/r,0,0,0},S, = {1/r,(1/r)cot¥, 0,0} (2.5)

are the conventional spherical constituents of the three-dimensional
part of the flat connection,

Dgp =tayp = =Dy, te, Djayy =0, t*Dap =0,Dast’ =0  (2.6)

are the deformation field strength [5] formerly mentioned. They are
a consequence of the curvature of time. The only components are

w v v

Dy =—, Dyy=—— D33 =——. 2.7
n= oo 22 o33 . (2.7)
The curvature tensor of this connection is

Rdal:: =2 [A[aob‘:"d] - A[aobiAd]yc] =2 [D[aobi/\d] - ‘D[da]ngbc - D[dobiDa]gc]
=2 [D[af\d]tb — D[a.b.,\d]tc + t[aDd]ngctb + t[a.Dd]‘qD.,ﬂ,tC + Db[dDa]C] ,

(2.8)
and the identity R[ dab]c =0 leads to

D aqts + Dipaaita + Digagyta =0 (2.9)
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or, multiplicated with ¢, to

D5y =0, (2.10)

the bar denoting projection on the three-dimensional space (the set

of hyperplanes orthogonal to ¢?). In (2.8) we have made use of the
fact, that the three-dimensional space is flat:

* 6 __ * ) * £ x §| —
Ropy’ = =2 [Aafing) — Afaers Agl| =0, a=1,2,3

afy

The four-dimensional extension of this quantity including the
time derivative is not flat, of course:

*Raat = 2Dpf Ay
and by contraction we get the Ricci tensor

*Rap = 2D,,{ *Ay. (2.11a)

We now contract (2.8) and simplify this new relation with
(2.11a), and then we split into space-like and time-like parts:

Ra_b = —Dapact® — Dachc,

Ratt' = DS~ Dol (2.11b)
Rastt® = —D S t* — Doy D,
Introducing the quantity
eab = DabActc + D:Dbc, (212)

we get with help of the vacuum field equations
Oup = Ktap, Ktap = D:ch — D;Dgy, (2.13)

which has a well defined meaning. The deviation éz® of the time-like
geodesics t"ta"b = 0 may be calculated by

. D%z

c i aysb ce diayb ce a
Ci -E-z— — ei (63: )“abt t’ = —Rdab&t t°t" = Oa6$ o
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With 6z¢ = {ér,ré9,r sin¥ép}, the components
Oap = {—2M/r* M/r* M/r3,0}

are regular, except at r = 0, and describe the relative accelerations
of freely falling points of unit mass. They cause a stretching in the
radial direction and a squeezing in the two other spacelike directions.
(See also the example in the textbook mentioned above [1].) The
accelerations are in equilibrium with the stresses [1]

Ktap = 2D( Dy (2.14)

This quantity is a symmetric traceless tensor with respect to a re-
stricted transformation and is locally conserved:

th,=0, (2.15)

which may be proved with help of (2.11b) and D**D,;, = (D£)?. The
relations (2.14) and (2.15) are of course destroyed by more general
transformations. What happens in performing (2.1) will be discussed
briefly in the next section.

We expect from a general, relativistic theory that form and
physical content of equations describing the nature of gravitation
will be highly dependent on the choice of the local reference system.
From the vacuum field equations, one may also extract

D[ac/\c] =0,

which has some similarity to Maxwell’s equstions [6]. The time-like
part of the field equations

Rapt*t® = —©°
confirms that O is traceless. Rewriting the equation above as

D2 D*D.y=0,

cAa

the time-like part of the field equation appears in a kind of Maxwellian
form.
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3. THE STATIC SYSTEM
Using a second system remaining at rest with respect to the

center of gravitational attraction, one has to calculate the field strength
with the help of (2.1) and the inhomogeneous transformation law

Gmnr = AgnA,r’uA::-Aabc + A: c

n|m*

The transport laws are
Qm;n = (I)m|n - Gnmrq)ra(pm/\n = (bm|n _*Anmr(bra
Gonw ="A,. T+ E, .0 B = umunE" —upmEqu”.

mn mn )

*A T is constructed by analogy to (2.4, first line), but the

mn 7
connection 1s not flat. It contains the geometric quantities

B, = {1/ar,0,0,0},S,. = {1/ar,(1/r)cotd,0,0} (3.1)

endowed with some physical properties. The only pure physical
quantity is the negative force of gravitational attraction:

Eo = (In®)|q,, Bm = {—aM/r?,0,0,0}. (3.2)

The Riemann tensor has the components

Rl =2 [G b= G[montoGr]tp] ="Remn + Ermn s

rmn [mene;r]
Remn =2 [*A[mon’:/\r] +*A[monto *Ar]tp] )
Ermnp = 2[E[m.nf/\r] - E[rm]thnp - E[rontoEm]tpa
=2 [unu[mE”M] — Epnprtim)u? + upupp Ep) EP — u”u[rEm]En] ,
and the Ricci tensor

R.n =*Rmn + Emna E[mn] = Oa E[m/\n] =0,

Enmn=FE, ... = FEnam — ExEpm +unum[E"A, — E"E,].
The spacelike part of the field equations then is

*Raﬂ + Eaﬂ =0, Eaﬂ = Eﬂ/\a - EﬂEa, a=1,23. (3.3)
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The three-dimensional Ricci tensor may be evaluated with *A4 ﬂ" and

relations (3.1). Eap is similar to O,p of Chap. 2. Defining the
displacment vector

sz™ = A "6z% = {0,627, 62", 624"},
one finds, for a timelike geodetic deviation,
(6zP);mnu™u"™ = —EP 6z,

The fourth part of the field equations exhibits the effects of
gravitational selfinteraction:

Rypu™u" =E",, —E"E, =0 (3.4)

or also

divE = ke e = lErEr, (8.5)
K

The field energy is conserved with respect to local systems:
€® = 0. Mixed spacelike and timelike parts of the field equations van-
ish. There is no transport of field energy in the static Schwarzschild
system.

4. CONCLUSIONS

We have been successful in proving that Schwarzschild geom-
etry may be reformulated covariantly. Quantities behaving like ten-
sors under restricted transformations satisfy field equations similar to
Maxwell’s but enriched with energy-like or stress-like expressions sat-
isfying covariant local conservation laws. Generalised Lorentz trans-
formations considerably change the physical picture of the theory
and moreover the content of the energy-like expressions. The con-
servation laws mentioned above make sense only if restricted (system
preserving) transformations are performed. Global coordinate sys-
tems do not have any physical meaning. They are used only to
perform some mathematical operations.
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