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Abstract 
We raise the question of how the curvature parameter k is related to the cur-
vature of the universe. We also show that, for a cosmological model that can 
be interpreted geometrically as a pseudo-hypersphere with a time-dependent 
radius, the Einstein field equations are not sufficient to fully describe the 
model. In addition, the differential equation system of Bianchi identities is 
required to describe the temporal evolution of the universe. We discuss the 
facts using the example of the de Sitter universe, the subluminal universe and 
the hR ct=  model by Melia. In particular, we discuss the formal differences 
between the two latter models and claim that both models are identical. We 
also examine the possibility of introducing non-comoving coordinates. 
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1. Introduction 

In many papers on expanding cosmological models, the topic is introduced with 
findings on the curvature parameter k. An expanding model is based on the me-
tric in the canonical form 

2 2 2 2 2
2

2

1d d ' ' d d '
'1

s r r t
rk

= + Ω −
−

R

.                (1.1) 

Here, 'r  is the comoving radial coordinate of an observer participating in an 
expanding motion and Ω  the solid angle. 't  is the cosmic time, which ap-
plies equally to all comoving observers and, at the same time, is the proper time 
of these observers. For 1k =  the underlying space should be positively curved 
and closed. For 0k =  the space is described as flat and 1k = −  negatively 
curved. The two latter universes are open, they exhibit infinite extension. 
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In an earlier paper [1], we showed that 0k =  does not necessarily mean that 
the universe described by the line element (1.1) is flat. We discuss this problem 
once again in Sec. 2. Sec. 3 deals extensively with the two versions of the de Sitter 
universe and its inconsistencies. In Sec. 4, we extend the considerations to the 
subluminal universe and to Melia’s model in Sec. 5. We also discuss the 
3-dimensional Ricci scalar and how meaningful the relation 3 0R =  is for 

0k = . In Sec. 6, we explore the possibilities of finding coordinate systems for 
non-comoving systems. 

Furthermore, we will use the following variables: R  radius of the universe, 
K  scale factor, H Hubble parameter, , ,B C U  curvature quantities, D tidal 
forces. 

2. The Curvature Parameter 

In our paper [1], we examined in detail the free fall in the Schwarzschild field, 
with the intention of extending the associated methods to expanding cosmolog-
ical models. With the transformation 

2M r
r

=
R

                           (2.1) 

the Schwarzschild metric 

2 2 2 2 21 2d d d 1 d
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              (2.2) 

can be converted into the canonical form 
2
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Here, ( )r=R R  is half the radius of curvature of the Schwarzschild parabola 
and according to (2.1) has the validity range [ ]2 ,M= ∞R . At the waist of 
Flamm’s paraboloid one has 2M=R  and this marks the event horizon. 

Comparison with (1.1) shows that the curvature parameter of the metric is 
1k = , Schwarzschild geometry thus builds on a positively curved space. Fur-

thermore, (2.3) formally corresponds to the line element of the de Sitter universe. 
We will build on this. 

Lemaître used a coordinate transformation to transform the Schwarzschild 
metric into the form 

2 2 2 2 2 2d d ' d d ' , rs r t = + Ω − = K R K
R

.              (2.4) 

As in the cosmological models, K  is referred to here as a scale factor. The line 
element is of type 0k = . The new coordinate system ( 'i ) accompanies a 
free-falling observer family. 't  is the common time for all observers and 'r  
the comoving radial coordinate. From the metric (2.4), we learn that 4 '4 ' 1g = . 
This means that there is no gravity present in this system. To get more insight 
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into the problem, we should remember the following: Observers hover in a 
closed elevator. Since they are not familiar with their environment, they consider 
themselves motionless in a flat gravitation-free space. Such considerations have 
been discussed in the literature under the term “Einstein’s elevator”. 

There is no doubt that there has been no change in the curvature of space due 
to the motion of the free-falling observers. 0k =  does not mean that the un-
derlying space is globally flat, but rather that it is only locally flat for the 
free-falling observers. This consideration is missing in papers which deal with 
cosmological models that expand in free fall. 

3. The Two Versions of the de Sitter Universe 

De Sitter designed a static cosmological model with a metric in the form (2.3). Its 
metric is of type 1k =  and can be interpreted as a metric on a 4-dimensional 
pseudo-hypersphere embedded in a 5-dimensional flat space. The pseu-
do-hypersphere has the time-independent radius R . A transformation given by 
Lemaître [2] [3] transforms this metric into the form (2.4) with the scale factor 

'eψ=K  via:
 
 

2 2 2 2 2 2 2 2 2d d ' ' d ' sin d d 's r r r tϑ ϑ ϕ = + + − K .         (3.1) 

It is of type 0k = . Other models, the anti-de-Sitter model, the Lanczos and 
the Lanczos-like model have similar characteristics. These models are grouped 
into the de Sitter family. The behavior of these models in transformations from 
comoving to non-comoving coordinates has been extensively studied by Florides 
[4]. We [5] [6] [7] have complemented the Lemaître coordinate transformations 
using Lorentz transformations. 

Since the scale factor over ' 't ψ= R  is time-dependent, the dS metric is con-
sidered in the form (2.4) as the metric of an expanding universe. However, this 
interpretation leads to contradictions. First of all, this view violates the principles 
of the general theory of relativity: A coordinate transformation cannot change 
the physical content of a theory. All possible coordinate systems are equal, and 
the choice of a particular coordinate system is usually a matter of utility. 

The conservation law leads to another discrepancy. If one has redefined the 
cosmological constant that is unpopular with many authors using 23λ = R , 

23pκ = − R , 2
0 3κµ = R , one realizes that the mass density 0µ  of the un-

iverse is constant, despite assumed expansion. Some authors have therefore tried 
to explain the constant mass density by producing new mass. However, this ap-
proach has proved unsatisfactory. Furthermore, Mitra [8] pointed out that, due 
to the equation of state 0 0p µ+ = , no matter flow and no energy transport can 
be detected, even for the non-comoving observer. 

The possibility of assigning a Lorentz transformation to the Lemaître coordi-
nate transformation sheds some light on the problem [5] [6]. A Lorentz trans-
formation transforms the static observer system into an accelerated one. In the 
static system, there are forces at every point in the cosmos that want to move the 
observers apart in all directions. The comoving observer system now follows 
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these forces in free fall. According to Einstein’s elevator principle [1], these 
forces are no longer perceptible in the comoving system. Instead of said forces, 
tidal forces [9] [10] occur. Mathematically, this process is carried out via the in-
homogeneous transformation law of the Ricci-rotation coefficients. 

This also makes it clear that neither a coordinate transformation nor a Lorentz 
transformation can change the geometric base structure of the space. 0k =  in 
(3.1) thus results from Einstein’s elevator principle and cannot be considered as 
a criterion for the flatness of the space. The question of how the de Sitter model 
is to be understood in its two versions was widely discussed among German 
physicists at the time. Finally, they turned to the great mathematician Klein [11]. 
His detailed answer ended the discussion. It is not known whether Klein’s au-
thority or the argumentative content of his work was the decisive factor. How-
ever, we cannot find any link between the geometries of the hyperspheres or 
their space-time slices and Klein’s statements. We have not found any work that 
responds to Klein’s publication. 

The geometric structure of the pseudo-hypersphere may best expressed with 
the metric in the form of 

2 2 2 2 2 2 2 2 2 2 2 2 2d d sin d sin sin d cos d
sin , d d .

s i
r i i t

η η ϑ η ϑ ϕ η ψ
η ψ

= + + +
= =

R R R R

R R
  (3.2) 

From it one takes the differential of the proper time 
2 2d cos d , cos 1i T i rη ψ η= = −R R .              (3.3) 

Parallel slices through the pseudo-hypersphere at an arbitrary position r gen-
erate pseudo-circles (hyperbolae of constant curvature) with the r-dependent ra-
dii cosηR  and the imaginary angle iψ . The pseudo-circles are open, they 
range from −∞  to +∞  and have the same curvature everywhere, even at in-
finity. The pseudo-circle is drawn in the literature as a hyperbola in pseudo-real 
representation, which visualizes the dS cosmos as a one-shell hyperboloid. This 
has the advantage that the infinity of the timelines is recognizable. However, 
taking this representation literally can lead to errors. No hyperbolic property is 
recognizable in the dS model, no slice through the pseudo-hypersphere leads to a 
hyperbola. 

At the point r = R , the equator of the pseudo-hypersphere, cos 0η =R  and 
the pseudo-circle degenerates to a point in the pseudo-real representation. No 
time passes there, just as time stops at the event horizon of the Schwarzschild 
field. As can be seen from (3.3), this point lies at r = R , i.e. at the equatorial 
spherical surface of the 3-dimensional hypersphere, which is assigned to an ob-
server at an arbitrarily chosen pole. We call this area the geometric horizon. 

The above-mentioned Lorentz transformation is associated with the Lemaître 
transformation. From it, the relative speed of the observers, which are driven 
apart by the forces of the universe, can be read from 

sin rv η= =
R

.                       (3.4) 
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Thus, the relative velocity is geometrically determined. At a pole arbitrarily 
fixed with 0r = , it has the value 0v =  and, on the equatorial spherical surface, 
the value 1v = , which is the value of the speed of light in the natural system of 
measurement. Thus, this horizon is also a cosmic horizon. In [12], we have 
shown that the observers’ recession velocity can only reach the speed of light 
asymptotically. This means that in the dS universe, the basic laws of special rela-
tivity are not violated. 

4. The Subluminal Model 

The dS universe dealt with in the last section is not particularly suitable for the 
adaptation of astrophysical data. Nevertheless, it is significant for historical rea-
sons. It has been instrumental in driving research into expanding cosmological 
models and is still the starting model for new expanding approaches. It has also 
been criticized that in expanding universes whose metric is known in comoving 
systems and to which a mass distribution can be assigned, no forces are acting 
on the masses. The expansion in free fall is responsible for the missing forces 
and consequently the common cosmic time for all observers. In [12], we envi-
saged an extended dS model in which the observers drift apart more slowly than 
in free fall and recognized forces acting on such observers. This model is only of 
mathematical importance, but the presented technique may be useful for build-
ing more sophisticated models. 

Another, rather promising attempt was a model [13] that builds on the dS 
universe, but drops the condition .const=R . We have called it a subluminal 
model because it definitively rules out that the recession velocity of the galaxies 
exceeds the speed of light. The subluminal universe is positively curved and closed. 
It has the position-independent pressure 21pκ = − R  and the time-dependent 
mass density 2

0 3κµ = R  with the equation of state 0 3 0pµ + = . Pressure and 
mass density result from the exact solutions of Einstein’s field equations. The 
subluminal model therefore differs significantly from the FRW standard model 
in which the pressure is inserted by hand and is therefore not an exact solution 
to Einstein’s field equations. Since the Einstein field equations do not fully de-
termine FRW models, it is necessary to introduce numerous parameters, namely, 
the Ωs and the deceleration parameter. These quantities must then be filled us-
ing astrophysical data. The subluminal model needs only one parameter, the ra-
dius of curvature of the universe, or the scale factor. The Friedman equation 
takes the simple form 1=R , 0=R . The expansion rate of the model is con-
stant. 

For models that build on a pseudo-hypersphere with a non-constant radius, 
Einstein’s field equations are insufficient to determine all the quantities of the 
model. The metric on a surface will determine the properties of that surface, but 
it will not be able to predict the change in the curvature of that surface. This is 
what the contracted Bianchi identities [ || ] 0s

m n r sR ⋅ ⋅ =  provide. They describe possi-
ble changes of the Riemann curvature tensor. For a genuine expanding cosmo-
logical model, two differential equation systems are needed 
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|| ||

1(I)
2

1(II) 0
2

mn mn mn

n
m n m

R g R T

R R

κ− = −

− =
.                    (4.1) 

The system (II) leads to the conservation law || 0n
m nT = . This is often used in the 

literature to establish an outstanding relation to variables. However, little refer-
ence is made to the above considerations. For models with constant R , the 
conservation law is trivial. Therefore, there is no need to use the system (II) to 
complement such a model. 

The subluminal model has a geometric horizon, namely the equatorial surface 
of the hypersphere. As with the dS universe, it is determined by the relation (3.4) 
and, at the same time, it is the cosmic horizon. No galaxy can exceed the speed 
of light; it can only reach it asymptotically. Therefore, a galactic island formation 
is excluded. The possibility that superluminal speeds can occur has been de-
duced from Hubble’s law. Using the redshift, it describes a linear relation be-
tween the recession velocity of the galaxies and the distance to a dislocated ob-
server. However, this relation only allows for superluminal speeds if one assumes 
that in the Hubble equation v Hr=  the variable r is unbounded. Arbitrary dis-
tances are only possible in open infinite universes. In a closed universe with a 
geometrical horizon, the radial variable can only take the amount R , the radius 
of the universe, as the highest value. 

We favor the view that infinite universes, be they flat or open, negatively 
curved ones, are ruled out as a way of describing Nature, this is because, on the 
one hand, infinities are hard to imagine, and on the other hand because we want 
to avoid conclusions from Hubble’s law, which lead to acausalities and contra-
dictions to the special theory of relativity. 

Attempts have also been made to avoid the disagreeable implications of Hub-
ble’s law by arguing that the Hubble velocity is a coordinate speed that does 
not make reliable predictions. This problem does not apply to the subluminal 
model. If one differentiates sinr η= R  according to cosmic time, one first  

obtains the non-invariant expression r r=




R
R

, which reduces to 1=R  due  

to sinv r r η= = = R . However, we have shown in [13] that this expression 
can be translated to 1d dv x T= . Here, 1dx  and dT  are the proper length and 
proper time of a non-comoving observer. Thus, the recession velocity is defined 
independently of the coordinates and is also the velocity used in the Lorentz 
transformation, which transforms the non-comoving system into the comoving 
system. 

In the introduction we explained, with the aid of the well-known Schwarz-
schild model, why gravity cannot be experienced in a free-falling elevator; we 
then transferred the problem to cosmic free-falling observers. We now want to 
address the problem in greater mathematical depth by borrowing a quantity 
from the Ricci-rotation coefficients that is closely related to the curvature of the 
space-like greater circles of the pseudo-hypersphere. 
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The static dS metric is of type (2.3) and is the seed metric for the subluminal 
model. From this metric, using the standard technique of the tetrad representa-
tion, we obtain the above-considered quantity 

1 cos ,0,0,0 , 1, 2,3,4mB m
r

η = = 
 

.                (4.2) 

Here η  is the polar angle of the pseudo-hypersphere and 2 2cos 1 rη = − R . 
After a Lorentz transformation from the static system into the comoving system, 
this variable takes the form 

'
1 1cos ,0,0, cosmB i v
r r

α η α η = − 
 

.                 (4.3) 

Here, according to (3.4), sinv η=  is the relative velocity between the two sys-
tems and 21 1 sin 1 cosα η η= − =  is the assigned Lorentz factor. Finally, we 
have 

1 ,0,0,m
iB

r′
 = − 
 R

.                        (4.4) 

The spatial part of the quantity B is '
1 ,0,0 , ' 1', 2 ',3'B
rα α = = 

 
 and corresponds  

to the expression of a flat geometric form. The same1 applies to the curvature of 
the space-like parallels of the pseudo-hypersphere 

'
1 1, cot ,0,m

iC
r r

ϑ = − 
 R

                     (4.5) 

and for a time-like slice on the pseudo-hypersphere, so for a pseudo-circle 

{ }1 ', 0,0,0 ' 0,0,0,m m
iU U U  = → = − 

 R
.             (4.6) 

From (4.3) it can be seen that even in the free-falling system, the space curva-
ture is still present via the geometric term cosη , but is compensated by the ki-
nematic term α . If one writes all components of the quantity B in the 
5-dimensional embedding space of the pseudo-hypersphere, one has with the 
local extra dimension 0 '  

'
1 1 1sin , cos ,0,0, cos , ' 0 ',1', 2 ',3', 4 'aB i v a
r r r

η α η α η = − = 
 

.  (4.7) 

This quantity can hardly be assigned to a flat space. Since all of the above ex-
pressions can be deduced directly from the type 0k =  metric, 

( )2 2 2 2 2 2d d ' ' d d 's r r t= + Ω −K                 (4.8) 

one will not be able to assume that 0k =  inevitably leads to a flat space. 
It should not be overlooked that after the Lorentz transformation, or, if one 

wishes, after the Lemaître transformation, fourth components appear in the 
three basic quantities of the model, the sum of which produces the expansion 
scalar. To understand the meaning of these quantities, let us return to the 

 

 

1Details on the calculation of Ricci-rotation coefficients can be found in our monographs [9] [10]. 
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Schwarzschild model. 
The new forces are the tidal forces, which act on the observer in Einstein’s 

elevator but are too weak in Earth’s proximity to be perceived by observers. 
Misner, Thorne, and Wheeler [14] derived these forces in their textbook with the 
aid of the geodesic deviation from the Riemann curvature tensor and Sharan [15] 
also illustrated them in his textbook. However, in an early article [16], we de-
duced the tidal forces directly from Einstein’s field equations. We now want to 
transfer the process to the cosmological problem. 

We summarize the three new components in (4.4), (4.5) and (4.6) to a quan-
tity2 Dαβ  

11 22 33 [ ], 0iD D D D αβ= = = − =
R

.                (4.9) 

These are the gravitational forces that act on a freely expanding observer. As the 
space expands, they uniformly enlarge a volume around the observer in all three 
spatial directions. The Ricci-rotation coefficients are decomposed according to 

* *s s s s
mn mn mn mnA B C D= + + .                   (4.10) 

where *B  and *C  are the spatial parts of B and C. They appear to be flat, as 
stated above, and the subequations of Einstein’s field equations drop out of Eins-
tein’s field equations with these quantities. As such, we only need to consider 

{ }, , 0,0,0,1s s s s s
mn n m mn sn n s nD u D u D D u D u= − = = .     (4.11) 

The Ricci only contains relations with tidal forces: 

 [ ]2s s s s r sr
mn mn s mn s n s m m n s r srR D u D D u D u u D u D D∧ ∧ ∧   = − + − − +    . (4.12) 

Here 1, 2,3m =  and | * *s s
m n m n nm s nm sB C∧Φ = Φ − Φ − Φ  defines the space-like 

covariant derivative. The relation 

[ ] 0s
s sD ∧ =                            (4.13) 

indicates that the curvature of the model is location-independent and considera-
bly simplifies the Ricci. The two remaining brackets in (4.12) lead to the results 
obtained using the Friedman equation. Of the Einstein field equations, only the 
relations 

3

4
44

,

,

s s
s s

s s
s s

R D u D D R D u D D

R D u D D R D u D D

γ γ δ γ
αβ αβ αβ γ γ δ γ

γ αβ γ αβ
γ αβ γ αβ

∧ ∧

∧ ∧

   = − + = − +   
   = − + = − +   

    (4.14) 

remain. After a short calculation, one obtains 

3 4
442 2

1 62 , , 0, 0R g R R Rαβ αβ= = = =
R R

.          (4.15) 

We note that the 3-dimensional Ricci scalar 3R  does not vanish. Finally, for the 
Einstein tensor one has 

442 2

1 3,G g Gαβ αβ= − = −
R R

                  (4.16) 

 

 

2Since we handle everything in the comoving system, we now omit the primes on the indices. 
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and from that one obtains 2 2
01 , 3pκ κµ= − =R R  and 0 3 0pµ + = , the re-

sults which are already known. 
It can be seen from the above system of equations that curvature effects can 

also be described in the freely expanding system with the Einstein field equations. 

5. The Model of Melia 

In numerous papers3, Melia has proposed a cosmological model that is flat and 
infinite and thus also contains an infinite amount of matter. Matter, space, time, 
and infinity were thus created at the Big Bang. Melia has called his model the 

hR ct=  model, where hR  is the non-comoving radial coordinate at the cosmic 
horizon of the expanding model but t is the cosmic time, i.e. the time in the sys-
tem that comoves with the expansion. 

A flat infinite model has no geometric horizon that defines the cosmic horizon. 
Melia, building on a flat universe, creates an event horizon by comparing it with 
the Schwarzschild theory. An enclosed mass ( )hM M r=  of a certain volume in 
the universe determines the Hubble radius4 22hr GM c=  and leads to the rela-
tion 'hr ct= , ( )hR ct= . The Hubble radius is the distance light has traveled 
since the Big Bang and 't  the age of the universe. hr  is the point at which the 
rate of expansion has reached the speed of light. From a point beyond hr , there 
is no connection to an observer within hr . Therefore, all considerations about 
whether Olbers’ paradox can significantly influence the brightness of the sky of 
fixed stars are ruled out. 

Since we believe that, despite the different view of the curvature parameter k, 
Melia’s model is identical to our subluminal model, we have to show how Me-
lia’s quantities relate to our quantities. On the pseudo-hypersphere, sinr η= R  
applies with R  as the time-dependent radius of curvature and η  as the polar 
angle. At the equatorial surface, sin 1η = , thus 

hr = R .                            (5.1) 

This is the basic relation which connects the two models under discussion. The 
geometric horizon corresponds to the Hubble horizon and thus to Melia’s event 
horizon. From 'hr ct=  one immediately gains c=R  or in the natural mea-
suring system 

1=R ,                           (5.2) 

a relation that we obtained with the equation system II from (4.1) and which 
leads to the solution of the Friedman equation. Equation (5.2) accounts for the 
simplicity of the subluminal model. This model also has a geometric speed, like 
all models based on a concrete geometric form. It is, as already addressed in Sec. 
3, 

sin rv η= =
R

                         (5.3) 

 

 

3Most papers by Melia and colleagues are listed in [13]. 
4Melia’s variables ,R t  correspond to our variables , 'r t , as we have used in earlier papers. 
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and is the recession velocity of galaxies. For hr r= , one has 1hv = . The reces-
sion velocity has reached the speed of light (asymptotically) at the equator. 
Higher speeds than the speed of light do not occur in either model, so the fun-
damental laws of special relativity remain. 

To examine the relationship between the two models in greater depth, let us 
return to the above-mentioned definition of Melia’s cosmic horizon. With re-
spect to the cosmological principle of Weyl and the Birkhoff theorem, Melia de-
termines the Hubble radius with 

( )
2

2 h
h

GM r
r

c
= .  

Here, 

( )
3

02

4
3

h
h

r
M r

c
µπ

=   

is the mass enclosed by the sphere with the radius hr  and 0µ  is the assigned 
mass density. Thus, with the aid of (5.1) 

 
4

0 0

3 3
8h

cr
Gµ κµ

= = =
π

R .                 (5.4) 

This immediately results in 

0 2

3κµ =
R

.                        (5.5) 

The mass density decreases as the universe increases in the radius R . These 
and similar relations can also be found in the Einstein universe, Friedman un-
iverse and the models of the dS family. However, this relation is not evident in 
the hR ct=  model. 

In addition, the discussion of whether the velocity defined by (5.3) is an inva-
riant expression or a coordinate velocity remains brief. As was already explained 
in Sec. 4, (5.3) can be reduced to the invariant relation 1d dv x T= , with the de 
Sitter proper length 1dx  and the proper time dT  in the non-comoving sys-
tem. 

Both models describe the relation between the non-comoving radial coordi-
nate r and the comoving 'r  with 

( )' 'r t r= K ,                        (5.6) 

where K  is the time-dependent scale factor. We still have to show that the 

hR ct=  model is compatible with the curvature of the pseudo-hypersphere. 
With 

0 0 0sin , ' sin , , .r r constη η= = = =R R R KR R         (5.7) 

we can write the Hubble parameter with both the scale factor and the pseu-
do-hypersphere’s radius of curvature 

H = =
 R K

R K
.                      (5.8) 
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0R  is the radius of curvature of the pseudo-hypersphere, if it is measured with 
the aid of comoving, i.e. expanding rods and therefore appears to be a constant 
quantity for the comoving observer. 

Lastly, it would still be necessary to investigate whether the evaluation of 
Einstein’s field equations results in different criteria for space curvature. Melia 
essentially relies on the Friedman equation; however, this is only one part of 
Einstein’s field equations, namely the 44-components of Einstein’s field equa-
tions. We did not find the remaining three subequations of Einstein’s field equa-
tions in his papers. But they are precisely what is needed to provide information 
about the curvature structure of space. Two methods are available for working 
through the problem: the coordinate method with the Christoffel symbols Γ  as 
connexion coefficients and the tetrad formalism with the Ricci-rotation coeffi-
cients. Both types of coefficients depend on the relation 

|

s ss k i j j
nm j ki j m nn m

A e e e e e= Γ + . 

The Ricci-rotation coefficients yield three quantities, the curvatures of the great-
er circles, parallels, and pseudo-circles on the pseudo-hypersphere. The Chris-
toffel symbols provide a larger number of components, most of which contain a 
collection of trigonometric functions that can only be assigned very indirectly or 
perhaps not at all to geometric objects. The procedure is therefore not particu-
larly suited for clarifying the question of whether 0k =  must lead to a flat space. 

Unless new arguments are submitted later that indicate a global flat space of 
the hR ct=  model, the current situation is to be interpreted in such a way that 
both models, the hR ct=  model and the subluminal model, are positively 
curved and therefore identical. 

Melia has an extensive set of astrophysical data and has shown in some articles 
that this data can be best adapted to the hR ct=  model, much better than to 
other FRW models. Thus, our subluminal model is well supported by Melia’s 
data and analyses. 

When developing our model, we did not envisage finding a model that closely 
relates to astrophysical data. Our goal was to provide mathematical foundations 
for a model that 

1) is an exact solution to Einstein’s field equations, 
2) involves pressure, which is a result of this exact solution and is not inserted 

by hand, as is the case with numerous models, 
3) does not allow superluminal speed and, 
4) can be fully described geometrically. 
The fact that this model is supported by astrophysical data was initially sur-

prising to us, but it justifies our efforts. However, Melia’s model also has an ad-
ditional mathematical profile due to the subluminal model. 

6. Coordinate Systems 

Most cosmological models assume a metric written in comoving coordinates. 
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This metric is also the natural framework for a model, because the rods and 
clocks associated with such a system are the ones we currently have available. 
Nevertheless, there is a need to present the obtained model in non-comoving 
coordinates as well. Of course, the question remains as to which new insights 
can be gained when looking for new representations. If one processes a model in 
tetrad calculus, a single coordinate system is sufficient to carry out operations 
such as differentiation and integration. Different coordinate systems are gener-
ally useful, but are of essentially equal value for certain problems. Comoving ob-
servers are characterized by ' .r const= , non-comoving observers by .r const= . 
The question is how to realize the latter in practice. The position of such an ob-
server must be continuously recalculated and a fixation to the calculated point in 
space requires significant technical effort. 

It is preferable to search for non-comoving coordinates if one does not have a 
static reference system, because one does not know the Lorentz transformation 
which converts expanding systems into static ones. This is the case if the model 
does not provide geometric velocities or if one has not fully exploited the geo-
metry. 

If one has successfully set up an expanding model and knows the metric in 
comoving coordinates, one also has the corresponding tetrads 

'
'

m
ie . If one also 

knows the geometrical speed or has determined the recession velocity in another 
way, one can also adjust the Lorentz transformation into a non-comoving system. 
With this and the inhomogeneous law of transformation of the Ricci-rotation 
coefficients, all field quantities can be calculated in the non-comoving system. 
With these, one can set up the stress-energy-momentum tensor and the conser-
vation law and recalculate the field equations. These operations can all be done 
without the explicit use of a coordinate system. 

However, if one wants to immediately start with a static system, the following 
possibility is a viable option: First of all, one transforms the expanding 4-bein 
( 'm ) with a Lorentz transformation into a static (m) 

'
' ' '

m m m
i m ie L e= .  

This would be enough to calculate the Ricci-rotation coefficients for the 
non-comoving system. However, it is also quite inconvenient, since the new te-
trads are still indicated in the comoving coordinate system ( 'i ). Now the ques-
tion arises as to whether the new 4-bein system can be diagonalized with a coor-
dinate transformation Λ  with 

' '
' '

m m m i
i m i ie L e= Λ .                       (6.1) 

If, with a little intuition, one has found Λ , it must be ascertained whether this 
transformation is holonomic, i.e. whether it relates to coordinate lines. Thus, the 
relations 

' ' '
[ | ] |0i i i
i k i ixΛ = ⇒ Λ =                    (6.2) 

must apply. That this need not always be the case has been demonstrated by a 
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generalized dS model [12]. Λs can indeed be found for this model. However, 
these do not fulfil the relations (6.2). Therefore, the coordinates are anholonom-
ic, meaning that there are no coordinate lines. The Ricci-rotation coefficients 
can therefore not be calculated with the 4-bein alone, but must be comple-
mented by the object of the anholonomity 

'' '' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' [ ' | ']' '

' ,
si ks s s s s s j j

m n m n m n m n n m m n j j k im n
A A e e e= + Λ + Λ + Λ Λ = Λ Λ . (6.3) 

This of course questions the usefulness of the method. 
The subluminal model provides a geometric velocity, with which the Lorentz 

matrix can be formed. With it, all field quantities can be transformed into the 
non-comoving system [13]. In particular, with the aid of the transformation 
analogous to (4.6) one has derived the radial force 

{ }2 2
4 1

'
' '

1ˆ ˆ, ,0,0,0 , ,0,0,

10,0,0, ,0,0,

m m m m m

m
m m m m

U U f U v f i v i v

i iL v

α α α

α α

 = + = − = − 
 

   = − = = − −   
   

F F
R

F , F F
R R R

  (6.4) 

which one is accustomed to derive from 44g  or 4
4e . Since 1U  is not a gra-

dient, it is not possible to go in the opposite direction and derive the metric 
coefficient 44g  from (6.4). The quantity mF  prevents this from being possible, 
wherein said quantity was obtained from the expansion of the universe. It is only 
if one switches off the expansion ( )0=F  that the whole expression is reduced 
to the known dS quantity Û , which can be derived from 44g . Thus, to a 
non-comoving observer cannot be assigned a fully non-comoving coordinate 
system. It should also be remembered that in (6.4) we are looking for the quan-
tity 44g , which is a solution to the differential equation system I. However, the 
expression containing the quantity F  is a solution to the differential equation 
system II. 

The search for the lapse function 44g  is probably historical. Even in the 
Schwarzschild model, the metric coefficients 44g  were used to calculate the 
gravitational redshift and/or time dilation. Recalling our discussion of free fall in 
the Schwarzschild field, we find that the ratio of the proper time of the 
free-falling observer and that of the static observer  

d ' 1 21
d
T M
T rα

= = −   

is identical to 44g . The time dilation can thus be deduced from the transfor-
mation behavior of the two observer systems. This applies equally to cosmologi-
cal problems. For the subluminal model, one has 

2

2

d ' 1 1
d
T r
T α

= = −
R

. 

In this model, there is no need to resort to a possibly existing metric component 

44g . If a model has a geometric velocity, the Lorentz factor can be created for 
observer systems moving relatively to each other and thus determine the redshift 
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as a function of r. 
No general method is known from the literature with which one could deter-

mine for which model static coordinates are possible. Investigations in this di-
rection have been undertaken by Mitra [17] and Gautreau [18] [19], among oth-
ers. In his papers, Melia has also tried to bring FRW metrics into the Schwarz-
schild form. 

Apart from some marginal notes, we cannot contribute anything to this. It 
could be that Florides [4], with his six models, has already exhausted all the pos-
sibilities. 

The subluminal model was developed by the simple generalization ( )'t=R R  
from the dS model. The subluminal model therefore consists of a set of self-similar 
dS universes dislocated in the 5-dimensional space. The question thus arises as 
to whether these universes, together with time, can be covered by a single coor-
dinate system. 

On the other hand, one tries to set up a metric for a surface in non-comoving 
coordinates which describes not only the properties of the surface but also the 
temporal change of this surface. This attempt is reminiscent of the German story 
of Baron Münchhausen, who pulls himself out of the swamp by his own braid. 
The properties of the surface would have to be separated here, distinguishing 
between those belonging to system I and those belonging to system II. 

7. Conclusion 

In this paper, we have tried to establish a connection between our subluminal 
model and Melia’s hR ct=  model. We have argued that a cosmological metric 
with the curvature parameter 0k =  does not necessarily require global flatness 
of the universe, but rather a local flatness due to the free fall of the expanding 
universe. We have confirmed our point of view by gradually introducing curva-
ture variables into the hR ct=  model, bringing the hR ct=  model into the 
formal vicinity of the subluminal model. The identity of both models is thus en-
sured. 
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